A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy...A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.展开更多
Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) ...Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope.展开更多
基金the Science & Technology Foundation of Huawei Ltd. (No.YJCB2005040SW)the Creative Foundation of Xidian University (No.05030).
文摘A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.
文摘Motivated by the autopilot of an unmanned aerial vehicle(UAV) with a wide flight envelope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive tracking controller(FATC) is proposed. The controller consists of a fuzzy baseline controller and an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the conservatism for the large envelope and guarantees satisfactory tracking performances with strong robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline controller is provided in the form of linear matrix inequality(LMI), and it specifies the satisfactory tracking performances in the absence of uncertainties. The adaptive increment ensures the uniformly ultimately bounded(UUB) predication errors to recover satisfactory responses in the presence of uncertainties. Simulation results show that the proposed controller helps to achieve high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to uncertainties throughout the entire flight envelope.