Severe mechanical fractu re and unstable interphase,associated with the large volumetric expansion/contraction,significantly hinder the application of high-capacity SiO_(x)materials in lithium-ion batteries.Herein,we ...Severe mechanical fractu re and unstable interphase,associated with the large volumetric expansion/contraction,significantly hinder the application of high-capacity SiO_(x)materials in lithium-ion batteries.Herein,we report the design and facile synthesis of a layer stacked SiO_(x)microparticle(LS-SiO_(x))material,which presents a stacking structure of SiO_(x)layers with abundant disconnected interstices.This LS-SiO_(x)microparticle can effectively accommodate the volume expansion,while ensuring negligible particle expansion.More importantly,the interstices within SiO_(x)microparticle are disconnected from each other,which efficiently prevent the electrolyte from infiltration into the interior,achieving stable electrode/-electrolyte interface.Accordingly,the LS-SiO_(x)material without any coating delivers ultrahigh average Coulombic efficiency,outstanding cycling stability,and full-cell applicability.Only 6 cycles can attain>99.92%Coulombic efficiency and the capacity retention at 0.05 A g^(-1)for 100 cycles exceeds99%.After 800 cycles at 1 A g^(-1),the thickness swelling of LS-SiO_(x)electrode is as low as 0.87%.Moreover,the full cell with pure LS-SiO_(x)anode exhibits capacity retention of 91.2%after 300 cycles at 0.2 C.This work provides a novel concept and effective approach to rationally design silicon-based and other electrode materials with huge volume variation for electrochemical energy storage applications.展开更多
基金the support of the National Natural Science Foundation of China(51634003)。
文摘Severe mechanical fractu re and unstable interphase,associated with the large volumetric expansion/contraction,significantly hinder the application of high-capacity SiO_(x)materials in lithium-ion batteries.Herein,we report the design and facile synthesis of a layer stacked SiO_(x)microparticle(LS-SiO_(x))material,which presents a stacking structure of SiO_(x)layers with abundant disconnected interstices.This LS-SiO_(x)microparticle can effectively accommodate the volume expansion,while ensuring negligible particle expansion.More importantly,the interstices within SiO_(x)microparticle are disconnected from each other,which efficiently prevent the electrolyte from infiltration into the interior,achieving stable electrode/-electrolyte interface.Accordingly,the LS-SiO_(x)material without any coating delivers ultrahigh average Coulombic efficiency,outstanding cycling stability,and full-cell applicability.Only 6 cycles can attain>99.92%Coulombic efficiency and the capacity retention at 0.05 A g^(-1)for 100 cycles exceeds99%.After 800 cycles at 1 A g^(-1),the thickness swelling of LS-SiO_(x)electrode is as low as 0.87%.Moreover,the full cell with pure LS-SiO_(x)anode exhibits capacity retention of 91.2%after 300 cycles at 0.2 C.This work provides a novel concept and effective approach to rationally design silicon-based and other electrode materials with huge volume variation for electrochemical energy storage applications.