The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc...The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.展开更多
The AlGaN-based deep ultraviolet light-emitting diodes(LED) with double electron blocking layers(d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances ...The AlGaN-based deep ultraviolet light-emitting diodes(LED) with double electron blocking layers(d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances compared with the conventional structure with only a single electron blocking layer, such as a higher recombination rate, improved light output power and internal quantum efficiency(IQE). The reasons can be concluded as follows. On the one hand, the weakened electrostatic field within the quantum wells(QWs) enhances the electron–hole spatial overlap in QWs, and therefore increases the probability of radioactive recombination. On the other hand, the added n-AlGaN layer can not only prevent holes from overflowing into the n-side region but also act as another electron source, providing more electrons.展开更多
InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron block...InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).展开更多
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically,...Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.展开更多
A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the ...A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band.展开更多
A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were ...A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were used as the current spreading layer and the Schottky current blocking layer(CBL), respectively. The results indicated that ITO and the Schottky CBL improve the total light extraction efficiency by relieving the current density crowding beneath the p-pad electrode. At the current of 20 mA, the light output power of the novel LED was 40% and 19% higher than those of the traditional LED and the new epitaxial LED without CBL. It was also found that the novel LED with ITO and CBL shows better thermal characteristics.展开更多
In this paper, we investigate an Al2O3/HfSiO stack as the blocking layer of a metal-oxide-nitride-oxide-silicon- type (MONOS) memory capacitor. Compared with a memory capacitor with a single HfSiO layer as the block...In this paper, we investigate an Al2O3/HfSiO stack as the blocking layer of a metal-oxide-nitride-oxide-silicon- type (MONOS) memory capacitor. Compared with a memory capacitor with a single HfSiO layer as the blocking layer or an Al2O3/HfO2 stack as the blocking layer, the sample with the Al2O3/HfSiO stack as the blocking layer shows high program/erase (P/E) speed and good data retention characteristics. These improved performances can be explained by energy band engineering. The experimental results demonstrate that the memory device with an Al2O3/HfSiO stack as the blocking layer has great potential for further high-performance nonvolatile memory applications.展开更多
Potash is one of the long-term scare deposits in China,and potash prospecting has long been listed as a key brainstorm project for our nation and geological prospecting units.There have been considerable studies in se...Potash is one of the long-term scare deposits in China,and potash prospecting has long been listed as a key brainstorm project for our nation and geological prospecting units.There have been considerable studies in search for potash deposits in the Kuqa depression of the Tarim basin(Jackson et al.,1991;Gemmer et al.,2004;Vendeville,2005;Vendeville and Jackson,1992a,1992b),展开更多
In GaN-based green light-emitting diodes(LEDs) with and without Mg-preflow before the growth of p-Al GaN electron blocking layer(EBL) are investigated experimentally.A higher Mg doping concentration is achieved in...In GaN-based green light-emitting diodes(LEDs) with and without Mg-preflow before the growth of p-Al GaN electron blocking layer(EBL) are investigated experimentally.A higher Mg doping concentration is achieved in the EBL after Mg-preflow treatment,effectively alleviating the commonly observed efficiency collapse and electrons overflowing at cryogenic temperatures.However,unexpected decline in quantum efficiency is observed after Mg-preflow treatment at room temperature.Our conclusions are drawn such that the efficiency decline is probably the result of different emission positions.Higher Mg doping concentration in the EBL after Mg-preflow treatment will make it easier for a hole to be injected into multiple quantum wells with emission closer to pGaN side through the(8-plane rather than the V-shape pits,which is not favorable to luminous efficiency due to the preferred occurrence of accumulated strain relaxation and structural defects in upper QWs closer to p-GaN.Within this framework,apparently disparate experimental observations regarding electroluminescence properties,in this work,are well reconciled.展开更多
According to the requirement of the project 'Establishment of the Physical Model of Earthquake PrecursorFields',this paper elucidates the train of thinking for research on the project and some scientific probl...According to the requirement of the project 'Establishment of the Physical Model of Earthquake PrecursorFields',this paper elucidates the train of thinking for research on the project and some scientific problems whichmust be studied i, the elucidation emphasizes that the core of this project is to study the conditions and processesof the generation of strong earthquakes. The paper first outlines the origin and development of the'strong-bodyearthquake-generating model' proposed by the author in the 1980;and then proves the reasonableness of themodel from three aspects, namely: deep structures, mechanical analysis and rock fracture experiments. Bystudying the tomographic image for the northern part of North China, it can be seen that the sources of strongearthquakes are all distributed in high-velocity bodies,or in the contact zone between high-velocity and lowvelocity bodies but nearer to the high-velocity body. It has been affirmed through studies of the mechanical modelsof hard and soft inclusions that the existence of a hard inclusion is an imPOrtant condition for the high concentration of large amounts of strain energy. A lot of theoretical and experimental studies have been made to investigate the conditions for rock instability; the results have consistently indicated that rock instability,sudden fracture and stress drop would be possible only if the stiffness of the source body is greater than the environmentalstiffness.展开更多
Aimed at more than 60 shaft linings damaged in Huaibei, Datun, Xuzhou and Yanzhou mine areas, this paper presents a new type of sliding shaft lining with asphalt blocks sliding layer. By model test, it is obtained tha...Aimed at more than 60 shaft linings damaged in Huaibei, Datun, Xuzhou and Yanzhou mine areas, this paper presents a new type of sliding shaft lining with asphalt blocks sliding layer. By model test, it is obtained that the deformation characteristics and the mechanical mechanisms of the sliding shaft lining under the condition of ground subsidence. The research results provide a testing basis for the sliding shaft lining design. By now, this kind of sliding shaft lining had been applied in 9 shafts in China and Bangladesh.展开更多
Sustainable,conductive,and porous carbon materials are ideal for energy storage materials.In this study,honeycomb-like carbon materials(HCM)are synthesized via a“salty”thermal treatment of abundant and sustainable c...Sustainable,conductive,and porous carbon materials are ideal for energy storage materials.In this study,honeycomb-like carbon materials(HCM)are synthesized via a“salty”thermal treatment of abundant and sustainable coffee extract.Systematic materials characterization indicates that the as-prepared HCM consists of heteroatoms(N and O,etc.)doped ultra-thin carbon framework,possesses remarkable specific surface area,and excellent electrical conductivity.Such properties bestow HCM outstanding materials to be the blocking layer for Li-I2 battery,significantly eliminating the dissolution of I2 in the cathode region and stopping the I2 from shutting to anode compartment.Furthermore,our electrochemical investigation suggests that HCM could incur surface pseudo-capacitive iodine-ions charge storage and contribute additional energy storage capacity.As a result,the resultant Li-I2 battery achieves a robust and highly reversible capacity of 224.5 mAh·g−1 at the rate of 10 C.Even under a high rate of 50 C,the remarkable capacity of the as-prepared Li-I2 battery can still be maintained at 120.2 mAh·g−1 after 4000 cycles.展开更多
Novel molecular material, 1-benzotlliazoly-3 -phenyl --pyrazoline (BTPP) was found to function as bright blue light emitting dye in organic electroluminescent device, and its optical and electric characteristics were ...Novel molecular material, 1-benzotlliazoly-3 -phenyl --pyrazoline (BTPP) was found to function as bright blue light emitting dye in organic electroluminescent device, and its optical and electric characteristics were investigated. This heterocyclic compound exhibited good characteristics of blue photoluminescence and electroluminescence, which had the emission peak at 450 nm. The single layer light-emitting devices using BTPP as light-emitting material dispersed in poly(N- vinylcarbazole) (PVK) and double layer ones using PBD as hole block layer above the light-emitting layer were fabricated using conventional spin-casting and vaccum vapour deposition methods. The introduction of PBD has enhanced electron injection and luminance efficiency, compared with the single layer LEDs.展开更多
In this paper,we report on the fabrication of a top-emitting electrophosphorescent p-i-n white organic lightemitting diode on the basis of a low-reflectivity Sm/Ag semi-transparent cathode together with a thickness-op...In this paper,we report on the fabrication of a top-emitting electrophosphorescent p-i-n white organic lightemitting diode on the basis of a low-reflectivity Sm/Ag semi-transparent cathode together with a thickness-optimized ZnS out-coupling layer.With a 24-nm out-coupling layer,the reflectivity of the cathode is reduced to 8% at 492 nm and the mean reflectivity is 24% in the visible area.By introducing an efficient electron blocking layer tris(1phenylpyrazolato,N,C2 ')iridium(III)(Ir(ppz) 3) to confine the exciton recombination area,the current efficiency and the colour stability of the device are effectively improved.A white emission with the Ir(ppz) 3 layer exhibits a maximum current efficiency of 9.8 cd/A at 8 V,and the Commission Internationale de L'Eclairage(CIE) chromaticity coordinates are almost constant during a large voltage change of 6 V-11 V.There is almost no viewing angular dependence in the spectrum when the viewing angle is no more than 45,with a CIE x,y coordinate variation of only(±0.0025,±0.0008).Even at a large viewing angle(75),the CIE x,y coordinate change is as small as(±0.0087,±0.0013).展开更多
A blue dye, 1-benzqthiazoly-3-phenyl-pyrazoline (BTPP) was found to function as bright light emitting dye in organic electroluminescent devices. This heterocyclic compound exhibits good characteristics of blue photolu...A blue dye, 1-benzqthiazoly-3-phenyl-pyrazoline (BTPP) was found to function as bright light emitting dye in organic electroluminescent devices. This heterocyclic compound exhibits good characteristics of blue photoluminescence and electroluminescence, which has emission peak at 445 nm. The thin films of fluorescent dye dispersed in poly(N-vinylcarbazole) (PVK) could serve as light-emitting layers in multilayer organic LEDs. 2-(4-Biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) and tris-(8-hydroxyquinoline) aluminum (Alq3) were introduced into double-layer and three-layer devices respectively. The introduction of electron transport material Alq3 enhanced the electron injection and luminous efficiency, as compared with double-layer devices. Maximum brightness and luminous efficiency can be reached up to 190 cd/m(2) and 0.31 m/W, respectively.展开更多
High-efficiency blue electrophosphorescent organic light-emitting devices employing MoO3 used as hole injection layer (HIL) and MoO3 doped N,N-dicarbazoly-3,5-benzene (mCP) as hole transport layer (HTL) were dem...High-efficiency blue electrophosphorescent organic light-emitting devices employing MoO3 used as hole injection layer (HIL) and MoO3 doped N,N-dicarbazoly-3,5-benzene (mCP) as hole transport layer (HTL) were demonstrated. The blue OLED with the novel anode structure and TAPC used as electron blocking layer show a low turn-on voltage of 2.4 V, a maximum power efficiency of 33.6 lm/W at 3.1 V and 25 lrn/W with 1 000 cd/m2 at 3.8 V. It is also found that the efficiency of the devices is dependent on the different EBL materials. This is may because of relationship with the charge mobility and the triplet energy level of EBL materials. The device efficiency is determined by the charge balance which plays an important role.展开更多
Pulsed anodic oxidation technique, a new way of forming current blocking layers, was successfully used in ridge-waveguide QW laser fabrication. This method was applied in 980 nm VCSELs fabrication to form a high-quali...Pulsed anodic oxidation technique, a new way of forming current blocking layers, was successfully used in ridge-waveguide QW laser fabrication. This method was applied in 980 nm VCSELs fabrication to form a high-quality native oxide current blocking layer, which simplifies the device process. A significant reduction of threshold current and a distinguished device performance are achieved. The 500 μm diameter device has a current threshold as low as 0.48 W. The maximum CW operation output power at room temperature is 1.48 W. The lateral divergence angle θ‖ and vertical divergence angle θ⊥ are as low as 15.3° and 13.8° without side-lobes at a current of 6 A.展开更多
In the enormous and still poorly mastered gap between the macro level, where well developed continuum theories of continuous media and engineering methods of calculation and design operate, and atomic, subordinate to ...In the enormous and still poorly mastered gap between the macro level, where well developed continuum theories of continuous media and engineering methods of calculation and design operate, and atomic, subordinate to the laws of quantum mechanics, there is an extensive meso-hierarchical level of the structure of matter. At this level unprecedented previously products and technologies can be artificially created. Nano technology is a qualitatively new strategy in technology: it creates objects in exactly the opposite way—large objects are created from small ones [1]. We have developed a new method for modeling acoustic monitoring of a layered-block elastic medium with several inclusions of various physical and mechanical hierarchical structures [2]. An iterative process is developed for solving the direct problem for the case of three hierarchical inclusions of l, m, s-th ranks based on the use of 2D integro-differential equations. The degree of hierarchy of inclusions is determined by the values of their ranks, which may be different, while the first rank is associated with the atomic structure, the following ranks are associated with increasing geometric sizes, which contain inclusions of lower ranks and sizes. Hierarchical inclusions are located in different layers one above the other: the upper one is abnormally plastic, the second is abnormally elastic and the third is abnormally dense. The degree of filling with inclusions of each rank for all three hierarchical inclusions is different. Modeling is carried out from smaller sizes to large inclusions;as a result, it becomes possible to determine the necessary parameters of the formed material from acoustic monitoring data.展开更多
A GaN vertical light emitting diode(LED)with a current block layer(CBL)was investigated.Vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL were fabricated.Optical and electrica...A GaN vertical light emitting diode(LED)with a current block layer(CBL)was investigated.Vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL were fabricated.Optical and electrical tests were carried out.The results show that the light output power of vertical LEDs with a non-ohmic contact CBL and with a silicon dioxide CBL are 40.6%and 60.7%higher than that of vertical LEDs without a CBL at 350 mA,respectively.The efficiencies of vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL drop to 72%,78%and 85.5%of their maximum efficiency at 350 mA,respectively. Moreover,vertical LEDs with a non-ohmic contact CBL have relatively superior anti-electrostatic ability.展开更多
The light output power of an InGaN/GaN light-emitting diode is improved by using a SiO2/TiO2 distributed Bragg reflector (DBR) and an A1 mirror as a hybrid reflective current blocking layer (CBL). Such a hybrid re...The light output power of an InGaN/GaN light-emitting diode is improved by using a SiO2/TiO2 distributed Bragg reflector (DBR) and an A1 mirror as a hybrid reflective current blocking layer (CBL). Such a hybrid reflective CBL not only plays the role of the CBL by enhancing current spreading but also plays the role of a reflector by preventing photons near the p electrode pad from being absorbed by a metal electrode. At a wavelength of 455 nm, a 1.5-pair of SiO2/TiO2 DBR and an A1 mirror (i.e. 1.5-pair DBR+A1) deposited on a p-GaN layer showed a normal-incidence reflectivity as high as 97.8%. With 20 mA current injection, it was found that the output power was 25.26, 24.45, 23.58 and 22.45 mW for the LED with a 1.5-pair DBR+AI CBL, a 3-pair DBR CBL, SiO2 CBL and without a CBL, respectively.展开更多
基金the National Natural Science Foundation of China(Grant number 51771178)Shaanxi Outstanding Youth Fund project(Grant number 2021JC-45)+2 种基金Key international cooperation projects in Shaanxi Province(Grant number 2020KWZ-007)the Major Program of Science and Technology in Shaanxi Province(Grant number20191102006)Open Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant number 32115019)。
文摘The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.
基金Project supported by the Special Strategic Emerging Industries of Guangdong Province,China(Grant No.2012A080304006)the Major Scientific and Technological Projects of Zhongshan City,Guangdong Province,China(Grant No.2014A2FC204)the Forefront of Technology Innovation and Key Technology Projects of Guangdong Province,China(Grant Nos.2014B010121001 and 2014B010119004)
文摘The AlGaN-based deep ultraviolet light-emitting diodes(LED) with double electron blocking layers(d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances compared with the conventional structure with only a single electron blocking layer, such as a higher recombination rate, improved light output power and internal quantum efficiency(IQE). The reasons can be concluded as follows. On the one hand, the weakened electrostatic field within the quantum wells(QWs) enhances the electron–hole spatial overlap in QWs, and therefore increases the probability of radioactive recombination. On the other hand, the added n-AlGaN layer can not only prevent holes from overflowing into the n-side region but also act as another electron source, providing more electrons.
基金Project supported by the National Natural Science Foundation of China (Grant No.50602018)the Science and Technology Program of Guangdong Province,China (Grant Nos.2010B090400456,2009B011100003,and 2010A081002002)the Science and Technology Program of Guangzhou City,China (Grant No.2010U1-D00191)
文摘InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).
基金supported by the National Natural Science Foundation of China(Grant No.61176043)the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong Province,China(Grant Nos.2010A081002005,2011A081301003,and 2012A080304016)the Youth Foundation of South China Normal University(Grant No.2012KJ018)
文摘Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1034004,50825603,and 51210011)the Fundamental Research Funds for the Central Universities,China(Grant No.12QX14)
文摘A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band.
基金Project supported by the National Natural Science Foundation of China(Grant No.11204009)the Natural Science Foundation of Beijing,China(Grant No.4142005)
文摘A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were used as the current spreading layer and the Schottky current blocking layer(CBL), respectively. The results indicated that ITO and the Schottky CBL improve the total light extraction efficiency by relieving the current density crowding beneath the p-pad electrode. At the current of 20 mA, the light output power of the novel LED was 40% and 19% higher than those of the traditional LED and the new epitaxial LED without CBL. It was also found that the novel LED with ITO and CBL shows better thermal characteristics.
基金supported partially by the National Basic Research Program of China (Grant No. 2010CB934204)the National Natural Science Foundation of China (Grant No. 60825403)+1 种基金the Director’s Fund of Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS)the National Science and Technology Major Project of China (Grant No. 2009ZX02023-005)
文摘In this paper, we investigate an Al2O3/HfSiO stack as the blocking layer of a metal-oxide-nitride-oxide-silicon- type (MONOS) memory capacitor. Compared with a memory capacitor with a single HfSiO layer as the blocking layer or an Al2O3/HfO2 stack as the blocking layer, the sample with the Al2O3/HfSiO stack as the blocking layer shows high program/erase (P/E) speed and good data retention characteristics. These improved performances can be explained by energy band engineering. The experimental results demonstrate that the memory device with an Al2O3/HfSiO stack as the blocking layer has great potential for further high-performance nonvolatile memory applications.
基金financially supported by the project of investigation and evaluation of potash deposits in the Cretaceous-Tertiary salt basin of the Tarim basin frompotash investigation project of China Geological Survey
文摘Potash is one of the long-term scare deposits in China,and potash prospecting has long been listed as a key brainstorm project for our nation and geological prospecting units.There have been considerable studies in search for potash deposits in the Kuqa depression of the Tarim basin(Jackson et al.,1991;Gemmer et al.,2004;Vendeville,2005;Vendeville and Jackson,1992a,1992b),
基金Supported by the National Key R&D Program of China under Grant Nos 2016YFB0400600 and 2016YFB0400601the State Key Program of the National Natural Science of China under Grant No 61334001+2 种基金the Key R&D Program of Jiangxi Province under Grant No 20165ABC28007the Natural Science Foundation of Jiangxi Province under Grant No 20151BAB207053the National Natural Science Foundation of China under Grant No 21405076
文摘In GaN-based green light-emitting diodes(LEDs) with and without Mg-preflow before the growth of p-Al GaN electron blocking layer(EBL) are investigated experimentally.A higher Mg doping concentration is achieved in the EBL after Mg-preflow treatment,effectively alleviating the commonly observed efficiency collapse and electrons overflowing at cryogenic temperatures.However,unexpected decline in quantum efficiency is observed after Mg-preflow treatment at room temperature.Our conclusions are drawn such that the efficiency decline is probably the result of different emission positions.Higher Mg doping concentration in the EBL after Mg-preflow treatment will make it easier for a hole to be injected into multiple quantum wells with emission closer to pGaN side through the(8-plane rather than the V-shape pits,which is not favorable to luminous efficiency due to the preferred occurrence of accumulated strain relaxation and structural defects in upper QWs closer to p-GaN.Within this framework,apparently disparate experimental observations regarding electroluminescence properties,in this work,are well reconciled.
文摘According to the requirement of the project 'Establishment of the Physical Model of Earthquake PrecursorFields',this paper elucidates the train of thinking for research on the project and some scientific problems whichmust be studied i, the elucidation emphasizes that the core of this project is to study the conditions and processesof the generation of strong earthquakes. The paper first outlines the origin and development of the'strong-bodyearthquake-generating model' proposed by the author in the 1980;and then proves the reasonableness of themodel from three aspects, namely: deep structures, mechanical analysis and rock fracture experiments. Bystudying the tomographic image for the northern part of North China, it can be seen that the sources of strongearthquakes are all distributed in high-velocity bodies,or in the contact zone between high-velocity and lowvelocity bodies but nearer to the high-velocity body. It has been affirmed through studies of the mechanical modelsof hard and soft inclusions that the existence of a hard inclusion is an imPOrtant condition for the high concentration of large amounts of strain energy. A lot of theoretical and experimental studies have been made to investigate the conditions for rock instability; the results have consistently indicated that rock instability,sudden fracture and stress drop would be possible only if the stiffness of the source body is greater than the environmentalstiffness.
文摘Aimed at more than 60 shaft linings damaged in Huaibei, Datun, Xuzhou and Yanzhou mine areas, this paper presents a new type of sliding shaft lining with asphalt blocks sliding layer. By model test, it is obtained that the deformation characteristics and the mechanical mechanisms of the sliding shaft lining under the condition of ground subsidence. The research results provide a testing basis for the sliding shaft lining design. By now, this kind of sliding shaft lining had been applied in 9 shafts in China and Bangladesh.
基金This study was financially supported by the Australia Research Council Discovery Projects(DP170103721 andDP180102003)We also acknowledge the computational support from the Australian Government through the National Computational Infrastructure(NCI)under the National Computational Merit Allocation Scheme and the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia.
文摘Sustainable,conductive,and porous carbon materials are ideal for energy storage materials.In this study,honeycomb-like carbon materials(HCM)are synthesized via a“salty”thermal treatment of abundant and sustainable coffee extract.Systematic materials characterization indicates that the as-prepared HCM consists of heteroatoms(N and O,etc.)doped ultra-thin carbon framework,possesses remarkable specific surface area,and excellent electrical conductivity.Such properties bestow HCM outstanding materials to be the blocking layer for Li-I2 battery,significantly eliminating the dissolution of I2 in the cathode region and stopping the I2 from shutting to anode compartment.Furthermore,our electrochemical investigation suggests that HCM could incur surface pseudo-capacitive iodine-ions charge storage and contribute additional energy storage capacity.As a result,the resultant Li-I2 battery achieves a robust and highly reversible capacity of 224.5 mAh·g−1 at the rate of 10 C.Even under a high rate of 50 C,the remarkable capacity of the as-prepared Li-I2 battery can still be maintained at 120.2 mAh·g−1 after 4000 cycles.
基金supported by the National "863" project !863 -307-05-05(02) National Natural Science foundation!69637010
文摘Novel molecular material, 1-benzotlliazoly-3 -phenyl --pyrazoline (BTPP) was found to function as bright blue light emitting dye in organic electroluminescent device, and its optical and electric characteristics were investigated. This heterocyclic compound exhibited good characteristics of blue photoluminescence and electroluminescence, which had the emission peak at 450 nm. The single layer light-emitting devices using BTPP as light-emitting material dispersed in poly(N- vinylcarbazole) (PVK) and double layer ones using PBD as hole block layer above the light-emitting layer were fabricated using conventional spin-casting and vaccum vapour deposition methods. The introduction of PBD has enhanced electron injection and luminance efficiency, compared with the single layer LEDs.
基金Project supported by the Science Fund of the Ministry of Science and Technology,China (Grant No. 2009CB930600)the National Natural Science Foundation of China (Grants Nos. 60907047,61274065,and 60977024)+4 种基金the Key Project of the Chinese Ministryof Education (Grants Nos. 104246 and 707032)the Research Fund for the Doctoral Program of Higher Education Institutions,China (Grant Nos. 20093223120003 and 20093223110003)the Natural Science Foundation of Jiangsu Province and the Higher Education Institutions of Jiangsu Province,China (Grants Nos. BK2009423,SJ209003,10KJB510013,and 11KJD510003)the Fok Ying-Tong Education Foundation,China (Grant No. 111051)the "Qing Lan" Program of Jiangsu Province and the "Pandeng"Project of Nanjing University of Posts and Telecommunications,China (Grant Nos. NY210015,NY211069,and NY210040)
文摘In this paper,we report on the fabrication of a top-emitting electrophosphorescent p-i-n white organic lightemitting diode on the basis of a low-reflectivity Sm/Ag semi-transparent cathode together with a thickness-optimized ZnS out-coupling layer.With a 24-nm out-coupling layer,the reflectivity of the cathode is reduced to 8% at 492 nm and the mean reflectivity is 24% in the visible area.By introducing an efficient electron blocking layer tris(1phenylpyrazolato,N,C2 ')iridium(III)(Ir(ppz) 3) to confine the exciton recombination area,the current efficiency and the colour stability of the device are effectively improved.A white emission with the Ir(ppz) 3 layer exhibits a maximum current efficiency of 9.8 cd/A at 8 V,and the Commission Internationale de L'Eclairage(CIE) chromaticity coordinates are almost constant during a large voltage change of 6 V-11 V.There is almost no viewing angular dependence in the spectrum when the viewing angle is no more than 45,with a CIE x,y coordinate variation of only(±0.0025,±0.0008).Even at a large viewing angle(75),the CIE x,y coordinate change is as small as(±0.0087,±0.0013).
基金This work was supported by National Natural Science Foundation of China(No.69637010).
文摘A blue dye, 1-benzqthiazoly-3-phenyl-pyrazoline (BTPP) was found to function as bright light emitting dye in organic electroluminescent devices. This heterocyclic compound exhibits good characteristics of blue photoluminescence and electroluminescence, which has emission peak at 445 nm. The thin films of fluorescent dye dispersed in poly(N-vinylcarbazole) (PVK) could serve as light-emitting layers in multilayer organic LEDs. 2-(4-Biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) and tris-(8-hydroxyquinoline) aluminum (Alq3) were introduced into double-layer and three-layer devices respectively. The introduction of electron transport material Alq3 enhanced the electron injection and luminous efficiency, as compared with double-layer devices. Maximum brightness and luminous efficiency can be reached up to 190 cd/m(2) and 0.31 m/W, respectively.
基金Funded by the National Natural Science Foundation of China(No.30871973)
文摘High-efficiency blue electrophosphorescent organic light-emitting devices employing MoO3 used as hole injection layer (HIL) and MoO3 doped N,N-dicarbazoly-3,5-benzene (mCP) as hole transport layer (HTL) were demonstrated. The blue OLED with the novel anode structure and TAPC used as electron blocking layer show a low turn-on voltage of 2.4 V, a maximum power efficiency of 33.6 lm/W at 3.1 V and 25 lrn/W with 1 000 cd/m2 at 3.8 V. It is also found that the efficiency of the devices is dependent on the different EBL materials. This is may because of relationship with the charge mobility and the triplet energy level of EBL materials. The device efficiency is determined by the charge balance which plays an important role.
文摘Pulsed anodic oxidation technique, a new way of forming current blocking layers, was successfully used in ridge-waveguide QW laser fabrication. This method was applied in 980 nm VCSELs fabrication to form a high-quality native oxide current blocking layer, which simplifies the device process. A significant reduction of threshold current and a distinguished device performance are achieved. The 500 μm diameter device has a current threshold as low as 0.48 W. The maximum CW operation output power at room temperature is 1.48 W. The lateral divergence angle θ‖ and vertical divergence angle θ⊥ are as low as 15.3° and 13.8° without side-lobes at a current of 6 A.
文摘In the enormous and still poorly mastered gap between the macro level, where well developed continuum theories of continuous media and engineering methods of calculation and design operate, and atomic, subordinate to the laws of quantum mechanics, there is an extensive meso-hierarchical level of the structure of matter. At this level unprecedented previously products and technologies can be artificially created. Nano technology is a qualitatively new strategy in technology: it creates objects in exactly the opposite way—large objects are created from small ones [1]. We have developed a new method for modeling acoustic monitoring of a layered-block elastic medium with several inclusions of various physical and mechanical hierarchical structures [2]. An iterative process is developed for solving the direct problem for the case of three hierarchical inclusions of l, m, s-th ranks based on the use of 2D integro-differential equations. The degree of hierarchy of inclusions is determined by the values of their ranks, which may be different, while the first rank is associated with the atomic structure, the following ranks are associated with increasing geometric sizes, which contain inclusions of lower ranks and sizes. Hierarchical inclusions are located in different layers one above the other: the upper one is abnormally plastic, the second is abnormally elastic and the third is abnormally dense. The degree of filling with inclusions of each rank for all three hierarchical inclusions is different. Modeling is carried out from smaller sizes to large inclusions;as a result, it becomes possible to determine the necessary parameters of the formed material from acoustic monitoring data.
基金Project supported by the National High Technology Research and Development Program of China(No2008AA03A197)the Knowledge Innovation Program of ISCAS(No08S4060000)
文摘A GaN vertical light emitting diode(LED)with a current block layer(CBL)was investigated.Vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL were fabricated.Optical and electrical tests were carried out.The results show that the light output power of vertical LEDs with a non-ohmic contact CBL and with a silicon dioxide CBL are 40.6%and 60.7%higher than that of vertical LEDs without a CBL at 350 mA,respectively.The efficiencies of vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL drop to 72%,78%and 85.5%of their maximum efficiency at 350 mA,respectively. Moreover,vertical LEDs with a non-ohmic contact CBL have relatively superior anti-electrostatic ability.
文摘The light output power of an InGaN/GaN light-emitting diode is improved by using a SiO2/TiO2 distributed Bragg reflector (DBR) and an A1 mirror as a hybrid reflective current blocking layer (CBL). Such a hybrid reflective CBL not only plays the role of the CBL by enhancing current spreading but also plays the role of a reflector by preventing photons near the p electrode pad from being absorbed by a metal electrode. At a wavelength of 455 nm, a 1.5-pair of SiO2/TiO2 DBR and an A1 mirror (i.e. 1.5-pair DBR+A1) deposited on a p-GaN layer showed a normal-incidence reflectivity as high as 97.8%. With 20 mA current injection, it was found that the output power was 25.26, 24.45, 23.58 and 22.45 mW for the LED with a 1.5-pair DBR+AI CBL, a 3-pair DBR CBL, SiO2 CBL and without a CBL, respectively.