With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the rou...With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm.展开更多
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct...Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.展开更多
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit...An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.展开更多
Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture ...Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture design process. However, the design of a fixture relies heavily on the designerts expertise and experience up to now. Therefore, a new approach to loeator layout determination for workpieces with arbitrary complex surfaces is pro- posed for the first time. Firstly, based on the fuzzy judgment method, the proper locating reference and locator - numbers are determined with consideration of surface type, surface area and position tolerance. Secondly, the lo- cator positions are optimized by genetic algorithm(GA). Finally, a typical example shows that the approach is su- perior to the experiential method and can improve positioning accuracy effectively.展开更多
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red...Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.展开更多
The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter stra...The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization.展开更多
New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In...New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In consideration of the large number of variables in the plant layout model, our new method can significantly reduce the number of variables with their own projection relationships. Also, as toxic gas dispersion is a usual incident in a chemical plant, a simple approach to describe the gas leakage is proposed, which can clearly represent the constraints of potential emission source and sitting facilities. For solving the plant layout model, an improved genetic algorithm (GA) based on infeasible solution fix technique is proposed, which improves the globe search ability of GA. The case study and experiment show that a better layout plan can be obtained with our method, and the safety factors such as gas dispersion and minimum distances can be well handled in the solution.展开更多
The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain op...The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain optimized non-overlap layout schemes from randomly initialized cases eectively.However,these local optimal solutions are too dicult to jump out of their current relative geometry relationships,signicantly limiting their further improvement in performance indicators.Therefore,considering the geometric diversity of layout schemes is put forward to alleviate this limitation.First,similarity measures,including modied cosine similarity and gaussian kernel function similarity,are introduced into the layout optimization process.Then the optimization produces a set of feasible layout candidates with the most remarkable dierence in geometric distribution and the most representative schemes are sampled.Finally,these feasible geometric solutions are used as initial solutions to optimize the physical performance indicators of the spacecra,and diversied layout schemes of spacecraequipment are generated for the engineering practice.The validity and eectiveness of the proposed methodology are demonstrated by two SELOD applications.展开更多
With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy e...With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.展开更多
Layout synthesis in quantum computing is crucial due to the physical constraints of quantum devices where quantum bits(qubits)can only interact effectively with their nearest neighbors.This constraint severely impacts...Layout synthesis in quantum computing is crucial due to the physical constraints of quantum devices where quantum bits(qubits)can only interact effectively with their nearest neighbors.This constraint severely impacts the design and efficiency of quantum algorithms,as arranging qubits optimally can significantly reduce circuit depth and improve computational performance.To tackle the layout synthesis challenge,we propose an algorithm based on integer linear programming(ILP).ILP is well-suited for this problem as it can formulate the optimization objective of minimizing circuit depth while adhering to the nearest neighbor interaction constraint.The algorithm aims to generate layouts that maximize qubit connectivity within the given physical constraints of the quantum device.For experimental validation,we outline a clear and feasible setup using real quantum devices.This includes specifying the type and configuration of the quantum hardware used,such as the number of qubits,connectivity constraints,and any technological limitations.The proposed algorithm is implemented on these devices to demonstrate its effectiveness in producing depth-optimal quantum circuit layouts.By integrating these elements,our research aims to provide practical solutions to enhance the efficiency and scalability of quantum computing systems,paving the way for advancements in quantum algorithm design and implementation.展开更多
Meta-heuristic algorithms proved to find optimal solutions for combinatorial problems in many domains. Nevertheless, the efficiency of these algorithms highly depends on their parameter settings. In fact, finding appr...Meta-heuristic algorithms proved to find optimal solutions for combinatorial problems in many domains. Nevertheless, the efficiency of these algorithms highly depends on their parameter settings. In fact, finding appropriate settings of the algorithm’s parameters is considered to be a nontrivial task and is usually set manually to values that are known to give reasonable performance. In this paper, Ant Colony Optimization with Parametric Analysis (ACO-PA) is developed to overcome this drawback. The main feature of the ACO-PA is the ability of deciding the appropriate parameter values within the predefined parameter variations. Besides, a new approach which enables the pheromone information value to be proportional to the heuristic information value is introduced. The effectiveness of the proposed algorithm is investigated through the application of the algorithm to the construction site layout problems taken from the state-of-art. Results show that the ACO-PA can reduce transportation cost up to 16.8% compared to the site layouts generated by Genetic Algorithms and basic ACO. Moreover, the effects of parameter settings on the generated solutions are investigated.展开更多
Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these adv...Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these advancements, efficiently programming GPUs remains a daunting challenge, often relying on trial-and-error optimization methods. This paper introduces an optimization technique for CUDA programs through a novel Data Layout strategy, aimed at restructuring memory data arrangement to significantly enhance data access locality. Focusing on the dynamic programming algorithm for chained matrix multiplication—a critical operation across various domains including artificial intelligence (AI), high-performance computing (HPC), and the Internet of Things (IoT)—this technique facilitates more localized access. We specifically illustrate the importance of efficient matrix multiplication in these areas, underscoring the technique’s broader applicability and its potential to address some of the most pressing computational challenges in GPU-accelerated applications. Our findings reveal a remarkable reduction in memory consumption and a substantial 50% decrease in execution time for CUDA programs utilizing this technique, thereby setting a new benchmark for optimization in GPU computing.展开更多
There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the posi...There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the position and quantity of fixture locators and clamps. Ageneral analysis model of flexible assembles deformation caused by fixture is set up based on'N-2-l' locating principle, in which the locator and damper are treated as the same fixture layoutelements. An analysis model for the flexible part deformation in fixturing is set up in order toobtain the optimization object function and constraints accordingly. The final fixture elementlayout could be obtained through global optimal research by using improved genetic algorithm, whicheffectively decreases fixture elements layout influence on flexible assembles deformation.展开更多
One of the important research issues in wireless sensor networks(WSNs)is the optimal layout designing for the deployment of sensor nodes.It directly affects the quality of monitoring,cost,and detection capability of W...One of the important research issues in wireless sensor networks(WSNs)is the optimal layout designing for the deployment of sensor nodes.It directly affects the quality of monitoring,cost,and detection capability of WSNs.Layout optimization is an NP-hard combinatorial problem,which requires optimization of multiple competing objectives like cost,coverage,connectivity,lifetime,load balancing,and energy consumption of sensor nodes.In the last decade,several meta-heuristic optimization techniques have been proposed to solve this problem,such as genetic algorithms(GA)and particle swarm optimization(PSO).However,these approaches either provided computationally expensive solutions or covered a limited number of objectives,which are combinations of area coverage,the number of sensor nodes,energy consumption,and lifetime.In this study,a meta-heuristic multi-objective firefly algorithm(MOFA)is presented to solve the layout optimization problem.Here,the main goal is to cover a number of objectives related to optimal layouts of homogeneous WSNs,which includes coverage,connectivity,lifetime,energy consumption and the number of sensor nodes.Simulation results showed that MOFA created optimal Pareto front of non-dominated solutions with better hyper-volumes and spread of solutions,in comparison to multi-objective genetic algorithms(IBEA,NSGA-II)and particle swarm optimizers(OMOPSO,SMOPSO).Therefore,MOFA can be used in real-time deployment applications of large-scale WSNs to enhance their detection capability and quality of monitoring.展开更多
The structure optimization design under thermo-mechanical coupling is a difficult problem in the topology optimization field.An adaptive growth algorithm has become a more effective approach for structural topology op...The structure optimization design under thermo-mechanical coupling is a difficult problem in the topology optimization field.An adaptive growth algorithm has become a more effective approach for structural topology optimization.This paper proposed a topology optimization method by an adaptive growth algorithm for the stiffener layout design of box type load-bearing components under thermo-mechanical coupling.Based on the stiffness diffusion theory,both the load stiffness matrix and the heat conduction stiffness matrix of the stiffener are spread at the same time to make sure the stiffener grows freely and obtain an optimal stiffener layout design.Meanwhile,the objectives of optimization are the minimization of strain energy and thermal compliance of the whole structure,and thermo-mechanical coupling is considered.Numerical studies for square shells clearly show the effectiveness of the proposed method for stiffener layout optimization under thermo-mechanical coupling.Finally,the method is applied to optimize the stiffener layout of box type load-bearing component of themachining center.The optimization results show that both the structural deformation and temperature of the load-bearing component with the growth stiffener layout,which are optimized by the adaptive growth algorithm,are less than the stiffener layout of shape‘#’stiffener layout.It provides a new solution approach for stiffener layout optimization design of box type load-bearing components under thermo-mechanical coupling.展开更多
Rapid progress in manufacturing greatly challenges to the VLSI physical design in both speed and performance. A fast detailed placement algorithm, FAME is presented in this paper, according to these demands. It inhe...Rapid progress in manufacturing greatly challenges to the VLSI physical design in both speed and performance. A fast detailed placement algorithm, FAME is presented in this paper, according to these demands. It inherits the optimal positions of cells given by a global placer and exact position to each cell by local optimization. FM Mincut heuristic and local enumeration are used to optimize the total wirelength in y and x directions respectively, and a two way mixed optimizing flow is adopted to combine the two methods for a better performance. Furthermore, a better enumeration strategy is introduced to speed up the algorithm. An extension dealing with blockages in placement has also been discussed. Experimental results show that FAME runs 4 times faster than RITUAL and achieves a 5% short in total wirelength on average.展开更多
Layout design problem is to determine a suitable arrangement for the departments so that the total costs associated with the flow among departments become least. Single Row Facility Layout Problem, SRFLP, is one of &l...Layout design problem is to determine a suitable arrangement for the departments so that the total costs associated with the flow among departments become least. Single Row Facility Layout Problem, SRFLP, is one of </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">layout problems that have many practical applications. This problem and its specific scenarios are often used to model many of the raised issues in the field of facility location. SRFLP is an arrangement of </span><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;"> departments with a specified length in a straight line so that the sum of the weighted distances between the pairs of departments is minimized. This problem is NP-hard. In this paper, first, a lower bound for a special case of SRFLP is presented. Then, a general </span><span style="font-family:Verdana;">case of SRFLP is presented in which some new and real assumptions are added to generate more practical model. Then a lower bound, as well as an algorithm, is proposed for solving the model. Experimental results on some instances in literature show the efficiency of our algorithm.展开更多
The paper proposes four indicators to guide sensors layout in practical experiment on explosion overpressure filed construction based on tomographic method with high reconstruction accuracy and the least sensors. Firs...The paper proposes four indicators to guide sensors layout in practical experiment on explosion overpressure filed construction based on tomographic method with high reconstruction accuracy and the least sensors. First, genetic algorithm is adopted to conduct global search and sensor layout optimization method is selected to satisfy four indicators. Then, by means of Matlab, the variation of these four indicators with different sensor layouts and reconstruction accuracy are analyzed and discussed. The results indicate that the sensor layout method proposed by this paper can reconstruct explosion overpressure field at the highest precision by a minimum number of sensors. It will guide actual explosion experiments in a cost-effective way.展开更多
Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.W...Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.Wind energy is a readily available and sustainable energy source.Wind farm layout optimization problem,through scientifically arranging wind turbines,significantly enhances the efficiency of harnessing wind energy.Meta-heuristic algorithms have been widely employed in wind farm layout optimization.This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm,referred to as AIGA,for optimizing wind farm layout problems.The adaptive strategy dynamically adjusts the placement of wind turbines,leading to a substantial improvement in energy utilization efficiency within the wind farm.In this study,AIGA is tested in four different wind conditions,alongside four other classical algorithms,to assess their energy conversion efficiency within the wind farm.Experimental results demonstrate a notable advantage of AIGA.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(LY19A020001).
文摘With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52001088,52271269,U1906233)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2021E050)+2 种基金the State Key Laboratory of Ocean Engineering(Grant No.GKZD010084)Liaoning Province’s Xing Liao Talents Program(Grant No.XLYC2002108)Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents(Grant No.2021RD16)。
文摘Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
基金Supported by National Natural Science Foundation of China(Grant No.52005371)Shanghai Municipal Natural Science Foundation of China(Grant No.22ZR1463900)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.22120220649)State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV202318).
文摘An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.
基金Supported by the Natural Science Foundation of Jiangxi Province(2009GZC0104)the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ10521)~~
文摘Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture design process. However, the design of a fixture relies heavily on the designerts expertise and experience up to now. Therefore, a new approach to loeator layout determination for workpieces with arbitrary complex surfaces is pro- posed for the first time. Firstly, based on the fuzzy judgment method, the proper locating reference and locator - numbers are determined with consideration of surface type, surface area and position tolerance. Secondly, the lo- cator positions are optimized by genetic algorithm(GA). Finally, a typical example shows that the approach is su- perior to the experiential method and can improve positioning accuracy effectively.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation(JPMJFS2115)。
文摘Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.
基金funded by the NationalKey Research and Development Program of China under Grant No.11974373.
文摘The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization.
基金Supported by the National Natural Science Foundation of China (61074153, 61104131), and the Fundamental Research Funds for Central Universities of China (ZY1111, JD1104).
文摘New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In consideration of the large number of variables in the plant layout model, our new method can significantly reduce the number of variables with their own projection relationships. Also, as toxic gas dispersion is a usual incident in a chemical plant, a simple approach to describe the gas leakage is proposed, which can clearly represent the constraints of potential emission source and sitting facilities. For solving the plant layout model, an improved genetic algorithm (GA) based on infeasible solution fix technique is proposed, which improves the globe search ability of GA. The case study and experiment show that a better layout plan can be obtained with our method, and the safety factors such as gas dispersion and minimum distances can be well handled in the solution.
基金supported by Aerospace Frontier Inspiration Project (Grant No.KY0505072113) from College of Aerospace Science and Engineering,NUDT,which are gratefully acknowledged by the authors.
文摘The spacecraequipment layout optimization design(SELOD)problems with complicated performance con-straints and diversity are studied in this paper.The previous literature uses the gradient-based algorithm to obtain optimized non-overlap layout schemes from randomly initialized cases eectively.However,these local optimal solutions are too dicult to jump out of their current relative geometry relationships,signicantly limiting their further improvement in performance indicators.Therefore,considering the geometric diversity of layout schemes is put forward to alleviate this limitation.First,similarity measures,including modied cosine similarity and gaussian kernel function similarity,are introduced into the layout optimization process.Then the optimization produces a set of feasible layout candidates with the most remarkable dierence in geometric distribution and the most representative schemes are sampled.Finally,these feasible geometric solutions are used as initial solutions to optimize the physical performance indicators of the spacecra,and diversied layout schemes of spacecraequipment are generated for the engineering practice.The validity and eectiveness of the proposed methodology are demonstrated by two SELOD applications.
文摘With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.
基金supported by National Science and Technology Council,Taiwan,NSTC 112-2221-E-024-004.
文摘Layout synthesis in quantum computing is crucial due to the physical constraints of quantum devices where quantum bits(qubits)can only interact effectively with their nearest neighbors.This constraint severely impacts the design and efficiency of quantum algorithms,as arranging qubits optimally can significantly reduce circuit depth and improve computational performance.To tackle the layout synthesis challenge,we propose an algorithm based on integer linear programming(ILP).ILP is well-suited for this problem as it can formulate the optimization objective of minimizing circuit depth while adhering to the nearest neighbor interaction constraint.The algorithm aims to generate layouts that maximize qubit connectivity within the given physical constraints of the quantum device.For experimental validation,we outline a clear and feasible setup using real quantum devices.This includes specifying the type and configuration of the quantum hardware used,such as the number of qubits,connectivity constraints,and any technological limitations.The proposed algorithm is implemented on these devices to demonstrate its effectiveness in producing depth-optimal quantum circuit layouts.By integrating these elements,our research aims to provide practical solutions to enhance the efficiency and scalability of quantum computing systems,paving the way for advancements in quantum algorithm design and implementation.
文摘Meta-heuristic algorithms proved to find optimal solutions for combinatorial problems in many domains. Nevertheless, the efficiency of these algorithms highly depends on their parameter settings. In fact, finding appropriate settings of the algorithm’s parameters is considered to be a nontrivial task and is usually set manually to values that are known to give reasonable performance. In this paper, Ant Colony Optimization with Parametric Analysis (ACO-PA) is developed to overcome this drawback. The main feature of the ACO-PA is the ability of deciding the appropriate parameter values within the predefined parameter variations. Besides, a new approach which enables the pheromone information value to be proportional to the heuristic information value is introduced. The effectiveness of the proposed algorithm is investigated through the application of the algorithm to the construction site layout problems taken from the state-of-art. Results show that the ACO-PA can reduce transportation cost up to 16.8% compared to the site layouts generated by Genetic Algorithms and basic ACO. Moreover, the effects of parameter settings on the generated solutions are investigated.
文摘Over the past decade, Graphics Processing Units (GPUs) have revolutionized high-performance computing, playing pivotal roles in advancing fields like IoT, autonomous vehicles, and exascale computing. Despite these advancements, efficiently programming GPUs remains a daunting challenge, often relying on trial-and-error optimization methods. This paper introduces an optimization technique for CUDA programs through a novel Data Layout strategy, aimed at restructuring memory data arrangement to significantly enhance data access locality. Focusing on the dynamic programming algorithm for chained matrix multiplication—a critical operation across various domains including artificial intelligence (AI), high-performance computing (HPC), and the Internet of Things (IoT)—this technique facilitates more localized access. We specifically illustrate the importance of efficient matrix multiplication in these areas, underscoring the technique’s broader applicability and its potential to address some of the most pressing computational challenges in GPU-accelerated applications. Our findings reveal a remarkable reduction in memory consumption and a substantial 50% decrease in execution time for CUDA programs utilizing this technique, thereby setting a new benchmark for optimization in GPU computing.
基金This project is supported by National 863 Plan (No.2001AA411140)National Natural Science Foundation of China (No.50175071).
文摘There are many welding fixture layout design problems of flexible parts inbody-in-white assembly process, which directly cause body assemble variation. The fixture layoutdesign quality is mainly influenced by the position and quantity of fixture locators and clamps. Ageneral analysis model of flexible assembles deformation caused by fixture is set up based on'N-2-l' locating principle, in which the locator and damper are treated as the same fixture layoutelements. An analysis model for the flexible part deformation in fixturing is set up in order toobtain the optimization object function and constraints accordingly. The final fixture elementlayout could be obtained through global optimal research by using improved genetic algorithm, whicheffectively decreases fixture elements layout influence on flexible assembles deformation.
基金This research has been funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University through Research Group No.RG-21-07-09.
文摘One of the important research issues in wireless sensor networks(WSNs)is the optimal layout designing for the deployment of sensor nodes.It directly affects the quality of monitoring,cost,and detection capability of WSNs.Layout optimization is an NP-hard combinatorial problem,which requires optimization of multiple competing objectives like cost,coverage,connectivity,lifetime,load balancing,and energy consumption of sensor nodes.In the last decade,several meta-heuristic optimization techniques have been proposed to solve this problem,such as genetic algorithms(GA)and particle swarm optimization(PSO).However,these approaches either provided computationally expensive solutions or covered a limited number of objectives,which are combinations of area coverage,the number of sensor nodes,energy consumption,and lifetime.In this study,a meta-heuristic multi-objective firefly algorithm(MOFA)is presented to solve the layout optimization problem.Here,the main goal is to cover a number of objectives related to optimal layouts of homogeneous WSNs,which includes coverage,connectivity,lifetime,energy consumption and the number of sensor nodes.Simulation results showed that MOFA created optimal Pareto front of non-dominated solutions with better hyper-volumes and spread of solutions,in comparison to multi-objective genetic algorithms(IBEA,NSGA-II)and particle swarm optimizers(OMOPSO,SMOPSO).Therefore,MOFA can be used in real-time deployment applications of large-scale WSNs to enhance their detection capability and quality of monitoring.
基金supported by National Natural Science Foundation of China (No.52075445)Science,Technology and Innovation Commission of Shenzhen Municipality (No.JCYJ20190806151013025).
文摘The structure optimization design under thermo-mechanical coupling is a difficult problem in the topology optimization field.An adaptive growth algorithm has become a more effective approach for structural topology optimization.This paper proposed a topology optimization method by an adaptive growth algorithm for the stiffener layout design of box type load-bearing components under thermo-mechanical coupling.Based on the stiffness diffusion theory,both the load stiffness matrix and the heat conduction stiffness matrix of the stiffener are spread at the same time to make sure the stiffener grows freely and obtain an optimal stiffener layout design.Meanwhile,the objectives of optimization are the minimization of strain energy and thermal compliance of the whole structure,and thermo-mechanical coupling is considered.Numerical studies for square shells clearly show the effectiveness of the proposed method for stiffener layout optimization under thermo-mechanical coupling.Finally,the method is applied to optimize the stiffener layout of box type load-bearing component of themachining center.The optimization results show that both the structural deformation and temperature of the load-bearing component with the growth stiffener layout,which are optimized by the adaptive growth algorithm,are less than the stiffener layout of shape‘#’stiffener layout.It provides a new solution approach for stiffener layout optimization design of box type load-bearing components under thermo-mechanical coupling.
基金Project Supported by National Natural Science Foundation of China( Grant No.697760 2 7) and by National973 Key Projectof China (
文摘Rapid progress in manufacturing greatly challenges to the VLSI physical design in both speed and performance. A fast detailed placement algorithm, FAME is presented in this paper, according to these demands. It inherits the optimal positions of cells given by a global placer and exact position to each cell by local optimization. FM Mincut heuristic and local enumeration are used to optimize the total wirelength in y and x directions respectively, and a two way mixed optimizing flow is adopted to combine the two methods for a better performance. Furthermore, a better enumeration strategy is introduced to speed up the algorithm. An extension dealing with blockages in placement has also been discussed. Experimental results show that FAME runs 4 times faster than RITUAL and achieves a 5% short in total wirelength on average.
文摘Layout design problem is to determine a suitable arrangement for the departments so that the total costs associated with the flow among departments become least. Single Row Facility Layout Problem, SRFLP, is one of </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">layout problems that have many practical applications. This problem and its specific scenarios are often used to model many of the raised issues in the field of facility location. SRFLP is an arrangement of </span><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;"> departments with a specified length in a straight line so that the sum of the weighted distances between the pairs of departments is minimized. This problem is NP-hard. In this paper, first, a lower bound for a special case of SRFLP is presented. Then, a general </span><span style="font-family:Verdana;">case of SRFLP is presented in which some new and real assumptions are added to generate more practical model. Then a lower bound, as well as an algorithm, is proposed for solving the model. Experimental results on some instances in literature show the efficiency of our algorithm.
基金Natural Science Foudation of Shanxi Province of China(No.2013011017-8)
文摘The paper proposes four indicators to guide sensors layout in practical experiment on explosion overpressure filed construction based on tomographic method with high reconstruction accuracy and the least sensors. First, genetic algorithm is adopted to conduct global search and sensor layout optimization method is selected to satisfy four indicators. Then, by means of Matlab, the variation of these four indicators with different sensor layouts and reconstruction accuracy are analyzed and discussed. The results indicate that the sensor layout method proposed by this paper can reconstruct explosion overpressure field at the highest precision by a minimum number of sensors. It will guide actual explosion experiments in a cost-effective way.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI under Grant JP22H03643,Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)under Grant JPMJSP2145JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation under Grant JPMJFS2115.
文摘Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.Wind energy is a readily available and sustainable energy source.Wind farm layout optimization problem,through scientifically arranging wind turbines,significantly enhances the efficiency of harnessing wind energy.Meta-heuristic algorithms have been widely employed in wind farm layout optimization.This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm,referred to as AIGA,for optimizing wind farm layout problems.The adaptive strategy dynamically adjusts the placement of wind turbines,leading to a substantial improvement in energy utilization efficiency within the wind farm.In this study,AIGA is tested in four different wind conditions,alongside four other classical algorithms,to assess their energy conversion efficiency within the wind farm.Experimental results demonstrate a notable advantage of AIGA.