利用有限元分析与结构优化技术,研究高速磁浮列车复合材料车体部件强度问题。依据复合材料结构和力学特征,建立某高速磁浮列车复合材料车体强度分析模型;基于系统动力学和空气动力学分析结果,确定车体与走行机构之间的接口载荷及车体表...利用有限元分析与结构优化技术,研究高速磁浮列车复合材料车体部件强度问题。依据复合材料结构和力学特征,建立某高速磁浮列车复合材料车体强度分析模型;基于系统动力学和空气动力学分析结果,确定车体与走行机构之间的接口载荷及车体表面承受的气动载荷;运用BS EN 12663:2010标准和Tsai-Wu失效准则对车体结构进行强度分析。结果表明:车体结构强度满足设计要求,其中碳纤维头罩结构的最大Tsai-Wu失效因子仅为0.154;为充分挖掘复合材料的潜能,分别以柔度、质量和铺层顺序为目标函数,对碳纤维头罩进行自由尺寸优化、尺寸优化以及层叠次序优化,最终获得最佳铺层顺序为45°/-45°/0°/90°/90°/0°/45°/-45°/45°/-45°;优化后碳纤维头罩比与优化前质量减轻了28.9%;将优化后的头罩映射到整车车体并进行强度分析,碳纤维头罩的最大Tsai-Wu失效因子为0.163。展开更多
文摘利用有限元分析与结构优化技术,研究高速磁浮列车复合材料车体部件强度问题。依据复合材料结构和力学特征,建立某高速磁浮列车复合材料车体强度分析模型;基于系统动力学和空气动力学分析结果,确定车体与走行机构之间的接口载荷及车体表面承受的气动载荷;运用BS EN 12663:2010标准和Tsai-Wu失效准则对车体结构进行强度分析。结果表明:车体结构强度满足设计要求,其中碳纤维头罩结构的最大Tsai-Wu失效因子仅为0.154;为充分挖掘复合材料的潜能,分别以柔度、质量和铺层顺序为目标函数,对碳纤维头罩进行自由尺寸优化、尺寸优化以及层叠次序优化,最终获得最佳铺层顺序为45°/-45°/0°/90°/90°/0°/45°/-45°/45°/-45°;优化后碳纤维头罩比与优化前质量减轻了28.9%;将优化后的头罩映射到整车车体并进行强度分析,碳纤维头罩的最大Tsai-Wu失效因子为0.163。