A modified Newton-Raphson iterative technique is formulated for obtaining the static configuration of the Lazy 'S' flexible marine riser between the floater and mid-arch buoy under its submerged self weight an...A modified Newton-Raphson iterative technique is formulated for obtaining the static configuration of the Lazy 'S' flexible marine riser between the floater and mid-arch buoy under its submerged self weight and the applied top tension. The geometrically non-linear problem is solved by finite difference with the above technique. The problem is formulated as a regular boundary value problem with specified moments and deflections at both ends. Usually the bending stiffness of the flexible riser made of Coflexip pipe is very low. By use of the above analysis, several flexible riser configurations are analyzed and their characteristic behaviors are investigated. Also, changes in the riser characteristics due to quasi-static motion of the floater end are estimated for the safety of the riser layout.展开更多
文摘A modified Newton-Raphson iterative technique is formulated for obtaining the static configuration of the Lazy 'S' flexible marine riser between the floater and mid-arch buoy under its submerged self weight and the applied top tension. The geometrically non-linear problem is solved by finite difference with the above technique. The problem is formulated as a regular boundary value problem with specified moments and deflections at both ends. Usually the bending stiffness of the flexible riser made of Coflexip pipe is very low. By use of the above analysis, several flexible riser configurations are analyzed and their characteristic behaviors are investigated. Also, changes in the riser characteristics due to quasi-static motion of the floater end are estimated for the safety of the riser layout.