A gold leaching process by using in situ oxidation products of added elemental sulfur in Ca(OH)2 solution was investigated. A gold concentrate containing 45 g/t Au was tested and 85%~87% of gold were leached. The leac...A gold leaching process by using in situ oxidation products of added elemental sulfur in Ca(OH)2 solution was investigated. A gold concentrate containing 45 g/t Au was tested and 85%~87% of gold were leached. The leached gold depends mainly on the initial molar ratio of elemental sulfur to the hydroxyl ion, the consumption of oxygen and the reaction temperature. Adding some surfactants, such as lignosulfonic calcium, at lower concentration increased the leached Au but at higher concentration decreased it. Both of thermodynamic analysis and experimental results show that thiosulfate is the major complexing agent for gold in the process.展开更多
Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was stu...Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was studied by the thermodynamic calculation,mineral dissolution test,leaching test and XPS analysis.The results show that the thiosulfate consumption slightly increases with increasing the concentration of arsenopyrite,but the gold dissolution is obviously hindered.This may mainly attribute to the catalytic effect of arsenopyrite on the thiosulfate decomposition and the formation of passivation layer on the gold foil surface.The passivation layer likely consists of Cu2S or Cu(S2O3)35-,element S,FeOOH and iron arsenate,which is deduced from the XPS analysis.However,the negative effect of arsenopyrite can be eliminated by adding additives.It is found that both additives of sodium carboxymethyl(CMC) and sodium phosphate(SHPP) can not only decrease the thiosulfate consumption but also improve the gold dissolution.展开更多
A process of biooxidation followed by thiosulfate leaching of gold from refractory gold concentrate was investigated.Mineralogical studies on the concentrate showed that very fine gold grains(<10μm)were encapsulat...A process of biooxidation followed by thiosulfate leaching of gold from refractory gold concentrate was investigated.Mineralogical studies on the concentrate showed that very fine gold grains(<10μm)were encapsulated in pyrite and arsenopyrite,while the proportion of monomer gold was only 21%.The gold-bearing sample was identified as a high-sulfur fine-sized wrapped-type refractory gold concentrate.The gold leaching efficiency obtained by direct cyanidation was only 59.86%.After biooxidation pretreatment,the sulfide minerals were almost completely decomposed,92 wt%of the mineral particles of the biooxidation residue were decreased to<38μm,and the proportion of monomer gold in the biooxidation residue was over 86%.Meanwhile,the gold content in the biooxidation residue was enriched to 55.60 g/t,and the S,Fe,and As contents were reduced to approximately 19.8 wt%,6.97 wt%,and 0.13 wt%,respectively.Ammoniacal thiosulfate was used for gold extraction from the biooxidation residue of the refractory gold concentrate.The results showed that the optimal reagent conditions were 0.18 M thiosulfate,0.02 M copper(II),1.0 M ammonia,and 0.24 M sulfite.Under these conditions,a maximum gold leaching efficiency of 85.05%was obtained.展开更多
Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics...Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics and mechanism were studied.When the temperature ranged between 30-75 °C,the pyrite leaching was mainly controlled by chemical reaction with positive correlation to the ferric ion concentration.The activation energy obtained from Arrhenius empirical formula is 51.39 k J/mol.The EDS and XPS analyses suggest that the oxidation of sulfur within pyrite is through a series of intermediate stages,and eventually is oxidized to sulphate accompanied with the formation of element sulfur.This indicates a thiosulfate oxidation pathway of the gold bearing pyrite oxidation in H2SO4-Fe2(SO4)3 system.展开更多
Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the s...Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25℃ are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.展开更多
This paper deals with gold extraction from a refractory concentrate by chlorine leaching.The process considers a pre-treatment of refractory materials by low temperature oxidation carried out with low oxygen concentra...This paper deals with gold extraction from a refractory concentrate by chlorine leaching.The process considers a pre-treatment of refractory materials by low temperature oxidation carried out with low oxygen concentration.The oxidized material is treated by leaching with brine.After gold adsorption/reduction onto activated carbon,iron and base metals can be precipitated by NaOH.Roasting tests show the necessity to carry out a thermal pre-treatment at least at 550°C to obtain a reduction of sulfur and mercury in the material(50%and 90%,respectively).Highest gold extraction yield(around 93%)is obtained in the leaching test performed with material sample treated at 650°C.This result confrms the necessity to optimize the thermal pre-treatment to improve Au recovery and to reduce chlorine consumption.A comparison with conventional cyanidation confrms that chlorination could be an useful alternative:in fact,gold extraction yield is quite low:57%in non-pre-treated material and 25%in pre-treatment material.展开更多
Numerous non-cyanide leaching lixiviants have been developed,among which thiosulfate is considered the most promising alternative to cyanide due to its non-toxicity,low price,high leaching rate and excellent character...Numerous non-cyanide leaching lixiviants have been developed,among which thiosulfate is considered the most promising alternative to cyanide due to its non-toxicity,low price,high leaching rate and excellent characteristics in dealing with carbonaceous and copper-bearing gold ores.The traditional copper−ammonia−thiosulfate system has been studied extensively.However,with many years of process development,there are still some problems and challenges with this gold leaching system.A series of studies using nickel-,cobalt-and ferric-based catalyst to substitute copper have been conducted with the purpose of reducing the consumption of thiosulfate.A variety of non-ammonia thiosulfate leaching systems including oxygen−thiosulfate,copper−thiosulfate,copper−EDA−thiosulfate,ferric−EDTA−thiosulfate,and ferric−oxalate−thiosulfate leaching systems have been also developed to eliminate the potential side-effect of ammonia.In this review,the basic theory and process development of some main gold leaching systems based on thiosulfate solutions were systematically summarized to illustrate the research status on thiosulfate leaching process.The potential effects of various additives such as organic ligands containing amino,carboxyl or hydroxy functional groups on gold thiosulfate leaching were described in detail.The potential opportunity and challenge for promoting the industrial development of thiosulfate-based gold leaching systems were also discussed.展开更多
While roasting has been widely applied to reduce the negative effect of carbonaceous matters on gold extraction from fine-grained carbonaceous gold ores, the phase and structure changes of minerals during roasting and...While roasting has been widely applied to reduce the negative effect of carbonaceous matters on gold extraction from fine-grained carbonaceous gold ores, the phase and structure changes of minerals during roasting and their in fluences on the leachi ng rate of gold have not been fully understood. This limits the extraction of carbonaceous gold deposits. The current work examines the oxidation process of a fine-grained carbonaceous gold ore during roasting using a range of techniques including X-ray diffraction (XRD), seanning electron microscopy (SEM), Energy Dispersive Spectrometer (EDS) analysis and pore structure analysis together with gold leaching tests. The results show that during the process of oxidative roasting, the carbonaceous matters (organic carbon and graphitic carbon) and pyrite were completely decomposed at 600 ℃ with the carbonaceous components burned and pyrite oxidized into hematite. At 650 ℃, while dolomite was decomposed into calcia, magnesia, calcium sulfate etc., the calcine structure became loose and porous, leading to a high gold leaching rate from the roasted product. Above 750 ℃, the porous calcite structure started to collapse along with the agglomeration, leading to the secondary encapsulation of gold particles, which contributed to the sharp drop in the gold leaching rate of the roasted product. This study suggests optimum phase and structure changes of minerals during roasting to achieve maximum gold extraction from fine-grained carbonaceous gold deposits.展开更多
A hydrometallurgical process for refractory gold-bearing arsenosulfide concentrates at ambient temperature and pressure was presented, including fine grinding with intensified alkali-leaching (FGIAL), enhanced agita...A hydrometallurgical process for refractory gold-bearing arsenosulfide concentrates at ambient temperature and pressure was presented, including fine grinding with intensified alkali-leaching (FGIAL), enhanced agitation alkali-leaching (EAAL), thiosulfate leaching and displacement. Experimental results on a refractory gold concentrate showed that the total consumption of NaOH in alkaline leaching is only 41% of those theoretically calculated under the conditions of full oxidization for the same amount of arse- nides and sulfides transformed into arsenates and sulfates, and 72.3% of gold is synchro-dissoluted by thiosulfate self-generated during alkaline leaching. After alkaline leaching, thiosulfate leaching was carried out for 24 h. The dissolution of gold is increased to 91.9% from 4.6% by cyanide without the pretreatment. The displacement of gold by zinc powder in the solution gets to 99.2%. Due to an amount of thiosulfate self-generated during alkaline leaching, the reagent addition in thiosulfate leaching afterwards is lower than the normal.展开更多
Na2SiO3 and Na2SeO3 were chosen as stable reagents of alkaline thiourea solution substituting Na2SO3, according to the structure-property relationship between the stability of alkaline thiourea and the structure of th...Na2SiO3 and Na2SeO3 were chosen as stable reagents of alkaline thiourea solution substituting Na2SO3, according to the structure-property relationship between the stability of alkaline thiourea and the structure of thiourea and sulfite ion, and the effect of the stable reagents on stability of alkaline thiourea was investigated. The results show that contrary to Na2SeO3, Na2SO3 and Na2SiO3 affect the stability of alkaline thiourea solution remarkably. The stable effect of Na2SiO3 on alkaline thiourea is obviously better than that of Na2SO3. The stable reagents Na2SO3 and Na2SiO3 decrease the decomposition rate of alkaline thiourea solution greatly, and the decomposition rate of alkaline thiourea reduces from (72.5%) to (33.8%) with addition of (0.3 mol·L-1) Na2SiO3. Dissolution currents of gold in the alkaline thiourea solution containing Na2SO3 and Na2SiO3 are (2.0) (mA·cm-2) and (3.5) (mA·cm-2) at the potential of 0.42 V, respectively, and Na2SO3 is consumed excessively due to the oxidation reaction of Na2SO3 occurring in the studied potential range. Na2SiO3 is an efficient stable reagent of alkaline thiourea solution, and gold dissolution is accelerated much more obviously by Na2SiO3 than by Na2SO3.展开更多
The resources of refractory gold ores are abundant, and their effective treatment can bring good economic benefits. This paper investigated the kinetics of leaching gold from refractory gold ores by ultrasonic-assiste...The resources of refractory gold ores are abundant, and their effective treatment can bring good economic benefits. This paper investigated the kinetics of leaching gold from refractory gold ores by ultrasonic-assisted electro-chlorination. The effects of ultrasound time ratio, initial hydrochloric acid concentration and leaching temperature on the kinetic parameters were discussed. It is found that the leaching ratio goes up with all the factors increasing. The reaction kinetics is controlled by diffusion. When ultrasound improves the diffusion by reducing the diffusion resistance, the activation energy increases to 37.1 kJ/mol.展开更多
The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leach...The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leaching were studied. Under optimum conditions of milling time 1 h, ball size 20 mm, sample to ball ratio 1/15 and mill speed 600 r/min, nearly 78% of sample is amorphized, particle size decreases from d100=30 μm to d100=8 μm, specific surface area increases from 1.3 m2/g to 4.6 m2/g and gold recovery enhances from 17.4 % in non-activated sample to 73.26 %.展开更多
A new technology of one-step leaching of refractory gold concentrate containing arsenic and sulfur was studied and 96. 8% of gold was extracted in an hour by this technology. Themodynamic possibility of reactions of a...A new technology of one-step leaching of refractory gold concentrate containing arsenic and sulfur was studied and 96. 8% of gold was extracted in an hour by this technology. Themodynamic possibility of reactions of arsenopyrite. pyrite and gold with sodium hypochlorite in NaOH medium, and solution chemistry of H3AuO3 at different pH values were analyzed. The reason why the gold wrapped by FeAsS, FeS2 can be leached out rapidly by grnding of porcelain ball mill. is explained.展开更多
The concentrations of S2O3 2- and SO3 2- were measured in gold leaching systems,including thiosulfate system,polysulfide system and the modified lime sulfur synthetic solution(ML)system in the process of chemical reac...The concentrations of S2O3 2- and SO3 2- were measured in gold leaching systems,including thiosulfate system,polysulfide system and the modified lime sulfur synthetic solution(ML)system in the process of chemical reaction.The interactions among S2O3 2- ,SO3 2-and S 2-were discussed.The behavior mechanism of sulfur-bearing reagents was proposed to describe the process reactions and their Gibbs free energy.The proper quantity oxygen and SO3 2- reduce decomposition of S2O3 2-and react with sulfur derived from the decomposition of SX 2- .So,SO3 2-ions have action to stabilize sulfur-bearing system and are favorable to leach gold.展开更多
The reaction process for leaching gold from sulfide gold concentrates containing copperwith ammonia-ammonium thiosulfate solution containing copper(Ⅱ)can be divided into initialstage and later stage of reaction.Ini...The reaction process for leaching gold from sulfide gold concentrates containing copperwith ammonia-ammonium thiosulfate solution containing copper(Ⅱ)can be divided into initialstage and later stage of reaction.Initial stage of reaction is controlled by interface reaction.Lat-er stage of reaction is controlled by diffusion process of reaction through solid products layer.Whole leaching process is under the control of corrosion reaction of pyrite bearing gold.Actionof ammonium sulfate in the system is probably as follows:(1)NH<sub>4</sub><sup>+</sup> and NH<sub>3</sub> forms a buffer so-lution;(2)SO<sub>4</sub><sup>2-</sup>ion inhibites the oxidation and decomposition of S<sub>2</sub>O<sub>3</sub><sup>2-</sup>ion.Cu<sup>2+</sup>ion in thesystem acts as an oxidant and oxygen makes the Cu<sup>2-</sup>regenerate.展开更多
The concentration and variational trend of As3 +and As 5+,the bacterial resistance for the As 3+and As 5+and converting conditions from As3 +to As 5+were analyzed.The additive was used to prompt the bacterial leaching...The concentration and variational trend of As3 +and As 5+,the bacterial resistance for the As 3+and As 5+and converting conditions from As3 +to As 5+were analyzed.The additive was used to prompt the bacterial leaching efficiency by changing valence state of arsenic.The results show that the concentration of As 3+ is larger than that of As 5+ in the lag phase.The concentration of As 3+ decreases in the log phase,and is lower than that of As5 +.HQ-0211 typed bacteria express better resistance for As 3+and As 5+and remain growing when the concentrations of As3 +and As 5+are above 6.0 g/L and 12.0 g/L,respectively.It is found that Fe 3+cannot oxidize As3 +singly as strong oxidant in the leaching system,but can cooperate with pyrite or chalcopyrite to do that.The oxidation of As 3+ is prompted with addition of H2O2.The bacterial activity is improved in favor of bacterial leaching efficiency.NaClO restrains the bacterial growth to depress leaching efficiency because of the chloric compounds affecting bacterial activity.展开更多
The thermodynamic equilibria and kinetic aspect of gold dissolution in iodine-iodide leaching were studied with emphasis on the effects of pH value and temperature on the system.The results of thermodynamic analysis o...The thermodynamic equilibria and kinetic aspect of gold dissolution in iodine-iodide leaching were studied with emphasis on the effects of pH value and temperature on the system.The results of thermodynamic analysis of iodine in aqueous solution were given and numerous forms of iodine exist mainly in the acid region of pH values.An increase of the potential of the system results in an increase of iodine speciation.The oxidizing potential of the system will increase by the addition of element iodine.The IO^(3-)anions are stable in the potential range from-2.0 to-0.75 V and at pH value greater than 12.1.An increase of the temperature shifts boundaries of existence of various iodine species in the acid region of pH values.Some of them become unstable.The determined values of the diffusion coefficients and the thickness of the diffusion boundary layer,as well as the solvent concentration on the disc surface(14 mg/L) indicate that the process proceeds in the external diffusion region.Thus,while choosing the conditions of leaching from gold-containing materials of different origins of iodide solvents,it is necessary to carry out the process within the acidic region of pH values,where I^-,I_3^- and IO_4^- ions are capable to form complex compounds with metals.展开更多
Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide ...Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide assistant leaching on three different types of materials which were classified as a refractory sulphide gold concentrate,an easily leachable sulphide gold concentrate,and a low grade oxide gold ore according to their leaching characteristics.The results showed that,favorable co-intensification effects on the three materials were obtained and leaching time of gold was effectively shortened to no longer than 12 h from 16 to 24 h for hydrogen peroxide assistant leaching.For the five tested heavy metal ions,Bi3+and Tl+ presented co-intensifying effect on all the three materials,and Hg2+ caused co-intensifying effect on both refractory and easily leachable sulphide gold concentrates,and Pb2+ and Ag+ only had co-intensifying effect on the easily leachable sulphide gold concentrate.展开更多
For the high sulfur refractory gold concentrate with 41.82%sulfur and 15.12 g/t gold,of which 82.11%was wrapped in sulfide,a well-controlled stirring tank leaching was carried out to improve the bio-oxidation efficien...For the high sulfur refractory gold concentrate with 41.82%sulfur and 15.12 g/t gold,of which 82.11%was wrapped in sulfide,a well-controlled stirring tank leaching was carried out to improve the bio-oxidation efficiency.Results show that bio-oxidation pretreatment can greatly improve the gold recovery rate of high-sulfur refractory gold concentrate,and at the optimum pH 1.3 in this study,compared with the process without pH control,the oxidation rate of sulfur increased from 79.31%to 83.29%,while the recovery rate of gold increased from 76.54%to 83.23%;under this condition the activity of mixed culture could be sustained and the formation of jarosite could diminish.The results also displayed that for the high sulfur refractory gold concentrate,the recovery of gold is positively correlated with the oxidation rate of sulfur,and the recovery rate of gold increases with the increase of sulfur oxidation rate within a certain range.展开更多
A detailed characterization of an iron oxy/hydroxide(gossan type) bearing refractory gold/silver ore was performed with a new diagnostic approach for the development of a pretreatment process prior to cyanide leaching...A detailed characterization of an iron oxy/hydroxide(gossan type) bearing refractory gold/silver ore was performed with a new diagnostic approach for the development of a pretreatment process prior to cyanide leaching. Gold was observed to be present as native and electrum(6-24 μm in size) and associated with limonite, goethite and lepidocrocite within calcite and quartz matrix. Mineral liberation analysis(MLA) showed that electrum is found as free grains and in association with beudantite, limonite/goethite and quartz. Silver was mainly present as acanthite(Ag2S) and electrum and as inclusions within beudantite phase in the ore. The cyanide leaching tests showed that the extractions of gold and silver from the ore(d80: 50 μm) were limited to 76% and 23%, respectively, over a leaching period of 24 h. Diagnostic leaching tests coupled with the detailed mineralogical analysis of the ore suggest that the refractory gold and silver are mainly associated within iron oxide mineral phases such as limonite/goethite and jarosite-beudantite, which can be decomposed in alkaline solutions. Based on these characterizations, alkaline pretreatment of ore in potassium hydroxide solution was performed prior to cyanidation, which improved significantly the extraction of silver and gold up to 87% Ag and 90% Au. These findings suggest that alkaline leaching can be used as a new diagnostic approach to characterize the refractoriness of iron oxy/hydroxide bearing gold/silver ore and as a pretreatment method to overcome the refractoriness.展开更多
基金Supported by the National Natural Science Foundation of China (No.: 59674025)
文摘A gold leaching process by using in situ oxidation products of added elemental sulfur in Ca(OH)2 solution was investigated. A gold concentrate containing 45 g/t Au was tested and 85%~87% of gold were leached. The leached gold depends mainly on the initial molar ratio of elemental sulfur to the hydroxyl ion, the consumption of oxygen and the reaction temperature. Adding some surfactants, such as lignosulfonic calcium, at lower concentration increased the leached Au but at higher concentration decreased it. Both of thermodynamic analysis and experimental results show that thiosulfate is the major complexing agent for gold in the process.
基金Project(51074182)supported by the National Natural Science Foundation of ChinaProject(2014M550422)supported by the Postdoctoral Science Foundation,ChinaProject(2015JJ3149)supported by the Natural Science Foundation of Hunan Province,China
文摘Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was studied by the thermodynamic calculation,mineral dissolution test,leaching test and XPS analysis.The results show that the thiosulfate consumption slightly increases with increasing the concentration of arsenopyrite,but the gold dissolution is obviously hindered.This may mainly attribute to the catalytic effect of arsenopyrite on the thiosulfate decomposition and the formation of passivation layer on the gold foil surface.The passivation layer likely consists of Cu2S or Cu(S2O3)35-,element S,FeOOH and iron arsenate,which is deduced from the XPS analysis.However,the negative effect of arsenopyrite can be eliminated by adding additives.It is found that both additives of sodium carboxymethyl(CMC) and sodium phosphate(SHPP) can not only decrease the thiosulfate consumption but also improve the gold dissolution.
基金financially supported by the Special Funds for the National Natural Science Foundation of China(No.U1608254)the Open Fund of State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores(No.ZJKY2017(B)KFJJ01 and ZJKY2017(B)KFJJ02)。
文摘A process of biooxidation followed by thiosulfate leaching of gold from refractory gold concentrate was investigated.Mineralogical studies on the concentrate showed that very fine gold grains(<10μm)were encapsulated in pyrite and arsenopyrite,while the proportion of monomer gold was only 21%.The gold-bearing sample was identified as a high-sulfur fine-sized wrapped-type refractory gold concentrate.The gold leaching efficiency obtained by direct cyanidation was only 59.86%.After biooxidation pretreatment,the sulfide minerals were almost completely decomposed,92 wt%of the mineral particles of the biooxidation residue were decreased to<38μm,and the proportion of monomer gold in the biooxidation residue was over 86%.Meanwhile,the gold content in the biooxidation residue was enriched to 55.60 g/t,and the S,Fe,and As contents were reduced to approximately 19.8 wt%,6.97 wt%,and 0.13 wt%,respectively.Ammoniacal thiosulfate was used for gold extraction from the biooxidation residue of the refractory gold concentrate.The results showed that the optimal reagent conditions were 0.18 M thiosulfate,0.02 M copper(II),1.0 M ammonia,and 0.24 M sulfite.Under these conditions,a maximum gold leaching efficiency of 85.05%was obtained.
基金Project(51474075)supported by the National Natural Science Foundation of China
文摘Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics and mechanism were studied.When the temperature ranged between 30-75 °C,the pyrite leaching was mainly controlled by chemical reaction with positive correlation to the ferric ion concentration.The activation energy obtained from Arrhenius empirical formula is 51.39 k J/mol.The EDS and XPS analyses suggest that the oxidation of sulfur within pyrite is through a series of intermediate stages,and eventually is oxidized to sulphate accompanied with the formation of element sulfur.This indicates a thiosulfate oxidation pathway of the gold bearing pyrite oxidation in H2SO4-Fe2(SO4)3 system.
基金financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20100006110003)
文摘Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25℃ are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.
文摘This paper deals with gold extraction from a refractory concentrate by chlorine leaching.The process considers a pre-treatment of refractory materials by low temperature oxidation carried out with low oxygen concentration.The oxidized material is treated by leaching with brine.After gold adsorption/reduction onto activated carbon,iron and base metals can be precipitated by NaOH.Roasting tests show the necessity to carry out a thermal pre-treatment at least at 550°C to obtain a reduction of sulfur and mercury in the material(50%and 90%,respectively).Highest gold extraction yield(around 93%)is obtained in the leaching test performed with material sample treated at 650°C.This result confrms the necessity to optimize the thermal pre-treatment to improve Au recovery and to reduce chlorine consumption.A comparison with conventional cyanidation confrms that chlorination could be an useful alternative:in fact,gold extraction yield is quite low:57%in non-pre-treated material and 25%in pre-treatment material.
基金financial supports from the Fundamental Research Funds for Central Universities of China (No. N182502044)。
文摘Numerous non-cyanide leaching lixiviants have been developed,among which thiosulfate is considered the most promising alternative to cyanide due to its non-toxicity,low price,high leaching rate and excellent characteristics in dealing with carbonaceous and copper-bearing gold ores.The traditional copper−ammonia−thiosulfate system has been studied extensively.However,with many years of process development,there are still some problems and challenges with this gold leaching system.A series of studies using nickel-,cobalt-and ferric-based catalyst to substitute copper have been conducted with the purpose of reducing the consumption of thiosulfate.A variety of non-ammonia thiosulfate leaching systems including oxygen−thiosulfate,copper−thiosulfate,copper−EDA−thiosulfate,ferric−EDTA−thiosulfate,and ferric−oxalate−thiosulfate leaching systems have been also developed to eliminate the potential side-effect of ammonia.In this review,the basic theory and process development of some main gold leaching systems based on thiosulfate solutions were systematically summarized to illustrate the research status on thiosulfate leaching process.The potential effects of various additives such as organic ligands containing amino,carboxyl or hydroxy functional groups on gold thiosulfate leaching were described in detail.The potential opportunity and challenge for promoting the industrial development of thiosulfate-based gold leaching systems were also discussed.
基金Supported by the National Natural Science Foundation of China(51704059,51474169)
文摘While roasting has been widely applied to reduce the negative effect of carbonaceous matters on gold extraction from fine-grained carbonaceous gold ores, the phase and structure changes of minerals during roasting and their in fluences on the leachi ng rate of gold have not been fully understood. This limits the extraction of carbonaceous gold deposits. The current work examines the oxidation process of a fine-grained carbonaceous gold ore during roasting using a range of techniques including X-ray diffraction (XRD), seanning electron microscopy (SEM), Energy Dispersive Spectrometer (EDS) analysis and pore structure analysis together with gold leaching tests. The results show that during the process of oxidative roasting, the carbonaceous matters (organic carbon and graphitic carbon) and pyrite were completely decomposed at 600 ℃ with the carbonaceous components burned and pyrite oxidized into hematite. At 650 ℃, while dolomite was decomposed into calcia, magnesia, calcium sulfate etc., the calcine structure became loose and porous, leading to a high gold leaching rate from the roasted product. Above 750 ℃, the porous calcite structure started to collapse along with the agglomeration, leading to the secondary encapsulation of gold particles, which contributed to the sharp drop in the gold leaching rate of the roasted product. This study suggests optimum phase and structure changes of minerals during roasting to achieve maximum gold extraction from fine-grained carbonaceous gold deposits.
基金This project was financially supported by the Natural Science Foundation of Liaoning Province of China (No.2001101015) and theFree Study Item of the Institute of Metal Research, Chinese Academy of Sciences (No.AM05-0866)
文摘A hydrometallurgical process for refractory gold-bearing arsenosulfide concentrates at ambient temperature and pressure was presented, including fine grinding with intensified alkali-leaching (FGIAL), enhanced agitation alkali-leaching (EAAL), thiosulfate leaching and displacement. Experimental results on a refractory gold concentrate showed that the total consumption of NaOH in alkaline leaching is only 41% of those theoretically calculated under the conditions of full oxidization for the same amount of arse- nides and sulfides transformed into arsenates and sulfates, and 72.3% of gold is synchro-dissoluted by thiosulfate self-generated during alkaline leaching. After alkaline leaching, thiosulfate leaching was carried out for 24 h. The dissolution of gold is increased to 91.9% from 4.6% by cyanide without the pretreatment. The displacement of gold by zinc powder in the solution gets to 99.2%. Due to an amount of thiosulfate self-generated during alkaline leaching, the reagent addition in thiosulfate leaching afterwards is lower than the normal.
文摘Na2SiO3 and Na2SeO3 were chosen as stable reagents of alkaline thiourea solution substituting Na2SO3, according to the structure-property relationship between the stability of alkaline thiourea and the structure of thiourea and sulfite ion, and the effect of the stable reagents on stability of alkaline thiourea was investigated. The results show that contrary to Na2SeO3, Na2SO3 and Na2SiO3 affect the stability of alkaline thiourea solution remarkably. The stable effect of Na2SiO3 on alkaline thiourea is obviously better than that of Na2SO3. The stable reagents Na2SO3 and Na2SiO3 decrease the decomposition rate of alkaline thiourea solution greatly, and the decomposition rate of alkaline thiourea reduces from (72.5%) to (33.8%) with addition of (0.3 mol·L-1) Na2SiO3. Dissolution currents of gold in the alkaline thiourea solution containing Na2SO3 and Na2SiO3 are (2.0) (mA·cm-2) and (3.5) (mA·cm-2) at the potential of 0.42 V, respectively, and Na2SO3 is consumed excessively due to the oxidation reaction of Na2SO3 occurring in the studied potential range. Na2SiO3 is an efficient stable reagent of alkaline thiourea solution, and gold dissolution is accelerated much more obviously by Na2SiO3 than by Na2SO3.
基金supported by the Key Subject of Shanghai Municipality (No.S30109)Shanghai Science and Technology Commission (No.10dz1205302)
文摘The resources of refractory gold ores are abundant, and their effective treatment can bring good economic benefits. This paper investigated the kinetics of leaching gold from refractory gold ores by ultrasonic-assisted electro-chlorination. The effects of ultrasound time ratio, initial hydrochloric acid concentration and leaching temperature on the kinetic parameters were discussed. It is found that the leaching ratio goes up with all the factors increasing. The reaction kinetics is controlled by diffusion. When ultrasound improves the diffusion by reducing the diffusion resistance, the activation energy increases to 37.1 kJ/mol.
基金supported by Iran Mineral Processing Research Center (IMPRC)the IMPRC for the financial support of this work
文摘The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leaching were studied. Under optimum conditions of milling time 1 h, ball size 20 mm, sample to ball ratio 1/15 and mill speed 600 r/min, nearly 78% of sample is amorphized, particle size decreases from d100=30 μm to d100=8 μm, specific surface area increases from 1.3 m2/g to 4.6 m2/g and gold recovery enhances from 17.4 % in non-activated sample to 73.26 %.
文摘A new technology of one-step leaching of refractory gold concentrate containing arsenic and sulfur was studied and 96. 8% of gold was extracted in an hour by this technology. Themodynamic possibility of reactions of arsenopyrite. pyrite and gold with sodium hypochlorite in NaOH medium, and solution chemistry of H3AuO3 at different pH values were analyzed. The reason why the gold wrapped by FeAsS, FeS2 can be leached out rapidly by grnding of porcelain ball mill. is explained.
基金Project(2007ZDGC-11) supported by "13115" Science and Technique Innovation Program of Shaanxi Province, ChinaProject(09JK561) supported by Educational Commission of Shaanxi Province of China
文摘The concentrations of S2O3 2- and SO3 2- were measured in gold leaching systems,including thiosulfate system,polysulfide system and the modified lime sulfur synthetic solution(ML)system in the process of chemical reaction.The interactions among S2O3 2- ,SO3 2-and S 2-were discussed.The behavior mechanism of sulfur-bearing reagents was proposed to describe the process reactions and their Gibbs free energy.The proper quantity oxygen and SO3 2- reduce decomposition of S2O3 2-and react with sulfur derived from the decomposition of SX 2- .So,SO3 2-ions have action to stabilize sulfur-bearing system and are favorable to leach gold.
基金Supported by the National Nature Science Foundation of China
文摘The reaction process for leaching gold from sulfide gold concentrates containing copperwith ammonia-ammonium thiosulfate solution containing copper(Ⅱ)can be divided into initialstage and later stage of reaction.Initial stage of reaction is controlled by interface reaction.Lat-er stage of reaction is controlled by diffusion process of reaction through solid products layer.Whole leaching process is under the control of corrosion reaction of pyrite bearing gold.Actionof ammonium sulfate in the system is probably as follows:(1)NH<sub>4</sub><sup>+</sup> and NH<sub>3</sub> forms a buffer so-lution;(2)SO<sub>4</sub><sup>2-</sup>ion inhibites the oxidation and decomposition of S<sub>2</sub>O<sub>3</sub><sup>2-</sup>ion.Cu<sup>2+</sup>ion in thesystem acts as an oxidant and oxygen makes the Cu<sup>2-</sup>regenerate.
基金Projects(50674029, 50874030) supported by the National Natural Science Foundation of ChinaProject(2006AA06Z127) supported by the National High-tech Research and Development Program of ChinaProject(20060145015) supported by Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘The concentration and variational trend of As3 +and As 5+,the bacterial resistance for the As 3+and As 5+and converting conditions from As3 +to As 5+were analyzed.The additive was used to prompt the bacterial leaching efficiency by changing valence state of arsenic.The results show that the concentration of As 3+ is larger than that of As 5+ in the lag phase.The concentration of As 3+ decreases in the log phase,and is lower than that of As5 +.HQ-0211 typed bacteria express better resistance for As 3+and As 5+and remain growing when the concentrations of As3 +and As 5+are above 6.0 g/L and 12.0 g/L,respectively.It is found that Fe 3+cannot oxidize As3 +singly as strong oxidant in the leaching system,but can cooperate with pyrite or chalcopyrite to do that.The oxidation of As 3+ is prompted with addition of H2O2.The bacterial activity is improved in favor of bacterial leaching efficiency.NaClO restrains the bacterial growth to depress leaching efficiency because of the chloric compounds affecting bacterial activity.
文摘The thermodynamic equilibria and kinetic aspect of gold dissolution in iodine-iodide leaching were studied with emphasis on the effects of pH value and temperature on the system.The results of thermodynamic analysis of iodine in aqueous solution were given and numerous forms of iodine exist mainly in the acid region of pH values.An increase of the potential of the system results in an increase of iodine speciation.The oxidizing potential of the system will increase by the addition of element iodine.The IO^(3-)anions are stable in the potential range from-2.0 to-0.75 V and at pH value greater than 12.1.An increase of the temperature shifts boundaries of existence of various iodine species in the acid region of pH values.Some of them become unstable.The determined values of the diffusion coefficients and the thickness of the diffusion boundary layer,as well as the solvent concentration on the disc surface(14 mg/L) indicate that the process proceeds in the external diffusion region.Thus,while choosing the conditions of leaching from gold-containing materials of different origins of iodide solvents,it is necessary to carry out the process within the acidic region of pH values,where I^-,I_3^- and IO_4^- ions are capable to form complex compounds with metals.
基金Project(50725416) supported by the National Natural Science Foundation for Distinguished Young Scholars of China
文摘Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide assistant leaching on three different types of materials which were classified as a refractory sulphide gold concentrate,an easily leachable sulphide gold concentrate,and a low grade oxide gold ore according to their leaching characteristics.The results showed that,favorable co-intensification effects on the three materials were obtained and leaching time of gold was effectively shortened to no longer than 12 h from 16 to 24 h for hydrogen peroxide assistant leaching.For the five tested heavy metal ions,Bi3+and Tl+ presented co-intensifying effect on all the three materials,and Hg2+ caused co-intensifying effect on both refractory and easily leachable sulphide gold concentrates,and Pb2+ and Ag+ only had co-intensifying effect on the easily leachable sulphide gold concentrate.
基金Projects(51704028,51574036)supported by the National Natural Science Foundation of ChinaProject supported by Program for Key Laboratory of Biohydrometallurgy of Ministry of Education Foundation,China。
文摘For the high sulfur refractory gold concentrate with 41.82%sulfur and 15.12 g/t gold,of which 82.11%was wrapped in sulfide,a well-controlled stirring tank leaching was carried out to improve the bio-oxidation efficiency.Results show that bio-oxidation pretreatment can greatly improve the gold recovery rate of high-sulfur refractory gold concentrate,and at the optimum pH 1.3 in this study,compared with the process without pH control,the oxidation rate of sulfur increased from 79.31%to 83.29%,while the recovery rate of gold increased from 76.54%to 83.23%;under this condition the activity of mixed culture could be sustained and the formation of jarosite could diminish.The results also displayed that for the high sulfur refractory gold concentrate,the recovery of gold is positively correlated with the oxidation rate of sulfur,and the recovery rate of gold increases with the increase of sulfur oxidation rate within a certain range.
基金Project(8300)supported by the Research Foundation of Karadeniz Technical University,Turkey
文摘A detailed characterization of an iron oxy/hydroxide(gossan type) bearing refractory gold/silver ore was performed with a new diagnostic approach for the development of a pretreatment process prior to cyanide leaching. Gold was observed to be present as native and electrum(6-24 μm in size) and associated with limonite, goethite and lepidocrocite within calcite and quartz matrix. Mineral liberation analysis(MLA) showed that electrum is found as free grains and in association with beudantite, limonite/goethite and quartz. Silver was mainly present as acanthite(Ag2S) and electrum and as inclusions within beudantite phase in the ore. The cyanide leaching tests showed that the extractions of gold and silver from the ore(d80: 50 μm) were limited to 76% and 23%, respectively, over a leaching period of 24 h. Diagnostic leaching tests coupled with the detailed mineralogical analysis of the ore suggest that the refractory gold and silver are mainly associated within iron oxide mineral phases such as limonite/goethite and jarosite-beudantite, which can be decomposed in alkaline solutions. Based on these characterizations, alkaline pretreatment of ore in potassium hydroxide solution was performed prior to cyanidation, which improved significantly the extraction of silver and gold up to 87% Ag and 90% Au. These findings suggest that alkaline leaching can be used as a new diagnostic approach to characterize the refractoriness of iron oxy/hydroxide bearing gold/silver ore and as a pretreatment method to overcome the refractoriness.