期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Long-term straw addition promotes moderately labile phosphorus formation, decreasing phosphorus downward migration and loss in greenhouse vegetable soil
1
作者 ZHANG Yin-jie GAO Wei +5 位作者 LUAN Hao-an TANG Ji-wei LI Ruo-nan LI Ming-yue ZHANG Huai-zhi HUANG Shao-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第9期2734-2749,共16页
Phosphorus(P) leaching is a major problem in greenhouse vegetable production with excessive P fertilizer application. Substitution of inorganic P fertilizer with organic fertilizer is considered a potential strategy t... Phosphorus(P) leaching is a major problem in greenhouse vegetable production with excessive P fertilizer application. Substitution of inorganic P fertilizer with organic fertilizer is considered a potential strategy to reduce leaching, but the effect of organic material addition on soil P transformation and leaching loss remains unclear. The X-ray absorption nearedge structure(XANES) spectroscopy technique can determine P speciation at the molecular level. Here, we integrated XANES and chemical methods to explore P speciation and transformation in a 10-year field experiment with four treatments: 100% chemical fertilizer(4 CN), 50% chemical N and 50% manure N(2CN+2MN), 50% chemical N and 50% straw N(2CN+2SN), and 50% chemical N and 25% manure N plus 25% straw N(2CN+2 MSN). Compared with the 4 CN treatment, the organic substitution treatments increased the content of labile P by 13.7–54.2% in the 0–40 cm soil layers, with newberyite and brushite being the main constituents of the labile P. Organic substitution treatments decreased the stable P content;hydroxyapatite was the main species and showed an increasing trend with increasing soil depth. Straw addition(2CN+2SN and 2CN+2 MSN) resulted in a higher moderately labile P content and a lower labile P content in the subsoil(60–100 cm). Moreover, straw addition significantly reduced the concentrations and amounts of total P, dissolved inorganic P(DIP), and particulate P in leachate. DIP was the main form transferred by leaching and co-migrated with dissolved organic carbon. Partial least squares path modeling revealed that straw addition decreased P leaching by decreasing labile P and increasing moderately labile P in the subsoil. Overall, straw addition is beneficial for developing sustainable P management strategies due to increasing labile P in the upper soil layer for the utilization of plants, and decreasing P migration and leaching. 展开更多
关键词 K-edge XANES phosphorus speciation leaching losses sustainable phosphorus management greenhouse vegetable production
下载PDF
Laboratory and numerical modelling of irrigation infiltration and nitrogen leaching in homogeneous soils
2
作者 Lei WU Ruizhi LI +4 位作者 Yan WANG Zongjun GUO Jiaheng LI Hang YANG Xiaoyi MA 《Pedosphere》 SCIE CAS CSCD 2024年第1期146-158,共13页
Nitrogen (N) plays a key role in crop growth and production;however,data are lacking especially regarding the interaction of biochar,grass cover,and irrigation on N leaching in saturated soil profiles.Eighteen soil co... Nitrogen (N) plays a key role in crop growth and production;however,data are lacking especially regarding the interaction of biochar,grass cover,and irrigation on N leaching in saturated soil profiles.Eighteen soil columns with 20-cm diameter and 60-cm height were designed to characterize the effects of different grass cover and biochar combinations,i.e.,bare soil+0%biochar (control,CK),perennial ryegrass+0%biochar (C1),Festuca arundinacea+0%biochar (C2),perennial ryegrass+1%biochar (C3),perennial ryegrass+2%biochar (C4),perennial ryegrass+3%biochar (C5),F.arundinacea+1%biochar (C6),F.arundinacea+2% biochar (C7),and F.arundinacea+3%biochar (C8),on periodic irrigation infiltration and N leaching in homogeneous loess soils from July to December 2020.Leachates in CK were 10.2%–35.3%higher than those in C1 and C2.Both perennial ryegrass and F.arundinacea decreased the volumes of leachates and delayed the leaching process in the 1%,2%,and 3%biochar treatments,and the vertical leaching rate decreased with biochar addition.The N leaching losses were concentrated in the first few leaching tests,and both total N (TN) and nitrate (NO_(3)^(-))-N concentrations in CK and C1–C8 decreased with increasing leaching test times.Biochar addition (1%,2%,and 3%) could further reduce the leaching risk of NO_(3)^(-)-N and the NO_(3)^(-)-N loss decreased with biochar addition.However,compared to 1%biochar,2% biochar promoted the leaching of TN under both grass cover types.The N leaching losses in CK,C1,C2,C3,C4,C6,and C7 were primarily in the form of NO_(3)^(-)-N.Among these treatments,CK,C1,and C2had the highest cumulative leaching fractions NO_(3)^(-)-N (>90%),followed by those in C3,C4,C6,and C7 (>80%).The cumulative leaching fraction of NO_(3)^(-)-N decreased with increasing leaching test times and biochar addition,and 3%biochar addition (i.e.,C5 and C8) reduced it to approximately 50%.The one-dimensional advective-dispersive-reactive transport equation can be used as an effective numerical approach to simulate and predict NO_(3)^(-)-N leaching in saturated homogeneous soils.Understanding the effects of different biochar and grass combinations on N leaching can help us design environmentally friendly interventions to manage irrigated farming ecosystems and reduce N leaching into groundwater. 展开更多
关键词 leaching loss nitrate nitrogen BIOCHAR grass cover analytical modelling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部