The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentratio...The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentrations of ammonia, ammonium sulfate and sodium persulfate were determined. The results show that the leaching rate is nearly independent of agitation above 300 r/min and increases with the increase of temperature, concentrations of ammonia, ammonium sulfate and sodium persulfate. The EDS analysis and phase quantitative analysis of the residues indicate that bornite can be dissolved by persulfate oxidization. The leaching kinetics with activation energy of 22.91 kJ/mol was analyzed by using a new shrinking core model (SCM) in which both the interfacial transfer and diffusion across the product layer affect the leaching rate. A semi-empirical rate equation was obtained to describe the leaching process and the empirical reaction orders with respect to the concentrations of ammonia, ammonium sulfate and sodium persulfate are 0.5, 1.2 and 0.5, respectively.展开更多
The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-t...The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-to-liquid ratio and reaction temperature,were chosen in the experiments.The results show that the increase of temperature,concentrations of ammonia and ammonium sulphate is propitious to the leaching rate of copper ore.The leaching rate increases with the decrease of particle size and solid-to-liquid ratio.The leaching rate is controlled by the diffusion through the ash layer and the activation energy is determined to be 25.54 kJ/mol.A semi-empirical equation was proposed to describe the leaching kinetics.展开更多
The ion exchange model of the leaching process was determined via batch leaching experiments using the Kerr model, with the selectivity coefficient experimentally determined to be 12.59×10^-10 L^2/g^2. Solute tra...The ion exchange model of the leaching process was determined via batch leaching experiments using the Kerr model, with the selectivity coefficient experimentally determined to be 12.59×10^-10 L^2/g^2. Solute transport laws of ammonium ions (NH4 +) and rare earth ions (RE^3+) in column leaching were described by the convection-dispersion equation (CDE). The source and sink in the CDE were determined by the Kerr model. The CDE with strong nonlinearity was solved using the sequential non-iterative method. Compared with the breakthrough curve of RE^3+, the correlation coefficient between the simulated and experimental curves reached 0.8724. Therefore, this method can simulate the one-dimensional column leaching of weathered crust elution-deposited rare earth ore. Moreover, the effects of different concentrations of ammonium sulfate ((NH4)2SO4) solution on the leaching rate of rare earth were analyzed. The optimal concentration of the (NH4)2SO4 solution had a linear relationship with the rare earth grade.展开更多
The permeability of the weathered crust elution-deposited rare earth ores directly affects the efficiency of in-situ leaching.The soil−water characteristic curve(SWCC)is an important constitutive relation for calculat...The permeability of the weathered crust elution-deposited rare earth ores directly affects the efficiency of in-situ leaching.The soil−water characteristic curve(SWCC)is an important constitutive relation for calculating the permeability of ore body,which is related to many factors.Soil−water characteristic tests of rare earth ore samples considering different factors were carried out by using the pressure plate instrument.Effects of dry density,particle size and solution leaching on water holding behavior and the mechanism were investigated.The experimental observations indicate that with the decrease of dry density,the pore ratio increases gradually,and the saturated water content increases.Under the same matric suction,the water content decreases gradually with the increase of particle size,thus decreasing water holding capacity of ore accordingly.In the same water content,matric suction is inversely proportional to particle size.Under the same matric suction,the water content of ore samples after leaching is less than that of the ore samples before leaching,indicating that solution leaching can decrease water holding capacity of ore.展开更多
基金Project(2007CB613601)supported by the National Basic Research Program of ChinaProject(10C1095)supported by the Foundation of Hunan Educational Committee,China
文摘The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentrations of ammonia, ammonium sulfate and sodium persulfate were determined. The results show that the leaching rate is nearly independent of agitation above 300 r/min and increases with the increase of temperature, concentrations of ammonia, ammonium sulfate and sodium persulfate. The EDS analysis and phase quantitative analysis of the residues indicate that bornite can be dissolved by persulfate oxidization. The leaching kinetics with activation energy of 22.91 kJ/mol was analyzed by using a new shrinking core model (SCM) in which both the interfacial transfer and diffusion across the product layer affect the leaching rate. A semi-empirical rate equation was obtained to describe the leaching process and the empirical reaction orders with respect to the concentrations of ammonia, ammonium sulfate and sodium persulfate are 0.5, 1.2 and 0.5, respectively.
基金Project(2007CB613601) supported by the National Basic Research Program of ChinaProject(10C1095) supported by the Foundation of Hunan Educational Committee,China
文摘The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-to-liquid ratio and reaction temperature,were chosen in the experiments.The results show that the increase of temperature,concentrations of ammonia and ammonium sulphate is propitious to the leaching rate of copper ore.The leaching rate increases with the decrease of particle size and solid-to-liquid ratio.The leaching rate is controlled by the diffusion through the ash layer and the activation energy is determined to be 25.54 kJ/mol.A semi-empirical equation was proposed to describe the leaching kinetics.
基金Projects(51664015,41602311,51774156) supported by the National Natural Science Foundation of China
文摘The ion exchange model of the leaching process was determined via batch leaching experiments using the Kerr model, with the selectivity coefficient experimentally determined to be 12.59×10^-10 L^2/g^2. Solute transport laws of ammonium ions (NH4 +) and rare earth ions (RE^3+) in column leaching were described by the convection-dispersion equation (CDE). The source and sink in the CDE were determined by the Kerr model. The CDE with strong nonlinearity was solved using the sequential non-iterative method. Compared with the breakthrough curve of RE^3+, the correlation coefficient between the simulated and experimental curves reached 0.8724. Therefore, this method can simulate the one-dimensional column leaching of weathered crust elution-deposited rare earth ore. Moreover, the effects of different concentrations of ammonium sulfate ((NH4)2SO4) solution on the leaching rate of rare earth were analyzed. The optimal concentration of the (NH4)2SO4 solution had a linear relationship with the rare earth grade.
基金the financial supports from the National Natural Science Foundation of China(No.52004106)supports from Jiangxi Education Department,China(No.GJJ180457).
文摘The permeability of the weathered crust elution-deposited rare earth ores directly affects the efficiency of in-situ leaching.The soil−water characteristic curve(SWCC)is an important constitutive relation for calculating the permeability of ore body,which is related to many factors.Soil−water characteristic tests of rare earth ore samples considering different factors were carried out by using the pressure plate instrument.Effects of dry density,particle size and solution leaching on water holding behavior and the mechanism were investigated.The experimental observations indicate that with the decrease of dry density,the pore ratio increases gradually,and the saturated water content increases.Under the same matric suction,the water content decreases gradually with the increase of particle size,thus decreasing water holding capacity of ore accordingly.In the same water content,matric suction is inversely proportional to particle size.Under the same matric suction,the water content of ore samples after leaching is less than that of the ore samples before leaching,indicating that solution leaching can decrease water holding capacity of ore.