Nonferrous mining activities are some of the largest sources of heavy metals emissions into the environment and China is one of the largest producers and consumers of lead and zinc in the world.The cumulative producti...Nonferrous mining activities are some of the largest sources of heavy metals emissions into the environment and China is one of the largest producers and consumers of lead and zinc in the world.The cumulative productions and emissions of lead and zinc from mining-related activities in China were estimated.Up to 2007,the cumulative productions of lead and zinc in China were estimated to be about 6.69 and 12.59 Mt,respectively;and about 1.62 Mt lead and 3.32 Mt zinc emitted into the ambient environment during the mining,processing and smelting activities,representing 24.39% and 26.36% cumulative production,respectively.Among these three types of mining-related activities,mineral processing contributes the most to the total emission of 50.67% lead and 45.51% zinc.展开更多
This study focused on the influence of base metal mining on heavy metal levels in soils and plants in the vicinity of Arufu lead-zinc mine, Nigeria. Soil samples (0-15 cm depth) and plant samples were collected from c...This study focused on the influence of base metal mining on heavy metal levels in soils and plants in the vicinity of Arufu lead-zinc mine, Nigeria. Soil samples (0-15 cm depth) and plant samples were collected from cul-tivated farmlands in and around the mine, the unmineralized site and a nearby forest (the control site). The samples were analyzed for heavy metals (Fe, Zn, Mn, Cu, Pb, Cr and Cd) by Atomic Absorption Spectrophotometry (AAS). The physical properties of soils (pH and LOI) were also measured. Results showed that soils from cultivated farm-lands have neutral pH values (6.5-7.5), and low organic matter contents (<10%). Levels of Zn, Pb and Cd in culti-vated soils were higher than the concentrations obtained from the control site. These heavy metals are most probably sourced from mining and agricultural activities in the study area. Heavy metal concentrations measured in plant parts decreased in the order of rice leaves>cassava tubers>peelings. In the same plant species, metal levels decreased in the order of Zn>Fe>Mn>Cu>Pb>Cr>Cd. Most heavy metals were found in plant parts at average concentrations normally observed in plants grown in uncontaminated soil, however, elevated concentrations of Pb and Cd were found in a few cassava samples close to the mine dump. A stepwise linear regression analysis identified soil metal contents, pH and LOI as some of the factors influencing soil-plant metal uptake.展开更多
[Objectives] The research was conducted to study characteristics of bioavailable levels pollution of heavy metals in the surface soil of the lead-zinc mine in Changhua.[Methods] A total of 56 surface samples were coll...[Objectives] The research was conducted to study characteristics of bioavailable levels pollution of heavy metals in the surface soil of the lead-zinc mine in Changhua.[Methods] A total of 56 surface samples were collected from the 3 study zones (peripheral zone, reclamation zone and tailing zone) located at the lead-zine mine in Changhua. Based on total and bioavailable heavy metals (Pb, Zn, Cu and Cd) in soils, the correlation of total content with bioavailable content was analyzed, and their pollution characteristics were assessed by methods of single factor pollution index, Nemerow pollution index, geological accumulation index and potential ecological risk index.[Results] (i) The surface soils were polluted by Pb, Zn, Cu, Cd in different degrees, and the overall trend of the contents of the 4 heavy metals was in order of Cd 〉 Pb 〉 Zn 〉 Cu. The average excess multiple of heavy metals of total and bioavailable content in soils were in the order of peripheral zone 〉 tailing zone 〉 reclaimed zone, and their pollution degrees were tailing zone 〉 peripheral zone 〉 reclaimed zone. (ii) In general, the total and bioavailable contents of Pb, Zn, Cu, Cd showed a significant correlation, but were not correlated in each study zone. (iii) Pollution degrees of the study zones were in the order of tailing zone 〉 peripheral zone 〉 reclamation zone. The pollutions of heavy metals Pb and Cd were more serious, especially Cd reached high levels of pollution degree, and the pollution degrees of Zn, Cu were lighter. Contributors of ecological risk were mainly Cd, Pb and Cu, and the contribution of Cd achieved more than 90 %, making it the main source of pollution.[Conclusions] The results not only revealed the pollution status of heavy metals in the surface soil of the abandoned coal mine, but also could provide scientific guidance for reasonable utilization and ecological recovery of the land.展开更多
This article analyzes the role of oxygen in lead zinc metallurgy,including shortening the metallurgical process,promoting energy conservation and environmental protection,improving metallurgical strength,enhancing raw...This article analyzes the role of oxygen in lead zinc metallurgy,including shortening the metallurgical process,promoting energy conservation and environmental protection,improving metallurgical strength,enhancing raw material adaptability,and enhancing comprehensive recovery efficiency.This article introduces different lead zinc metallurgical processes and their oxygen consumption characteristics,including oxygen enriched side blowing lead smelting,oxygen bottom blowing lead smelting,oxygen enriched top blowing lead smelting,flash smelting lead,oxygen pressure leaching zinc smelting,and atmospheric pressure oxygen leaching zinc smelting.It is pointed out that oxygen enhanced metallurgy is the direction for the transformation and upgrading of lead zinc metallurgy.展开更多
Iran is located on a silver, lead, and zinc belt and according to the latest studies holds 11 million tons of lead, zinc, and silver stones which constitute 4 percent of global resources. Considering that mineral mate...Iran is located on a silver, lead, and zinc belt and according to the latest studies holds 11 million tons of lead, zinc, and silver stones which constitute 4 percent of global resources. Considering that mineral materials are explored in an uncertain space, exploration investment risk is an inseparable part of these activities. The important fact is to minimize the effect of this undesired factor in exploration. To achieve this, it is required that exploration activities and withdrawals are performed in a certain framework in which risk minimization is considered. Using mineral potential modelling for determining promising zones which should be taken into consideration in more detailed stages could make achieving the purpose possibly. This work is aimed at applying fuzzy neural network and TOPSIS methods simultaneously in order to explore zinc and lead resources. In this article, geological, telemetry, geophysics, and geochemistry data is integrated using fuzzy-neural network (neuro fuzzy) and using TOPSIS method rating for lead and zinc ore deposit potential mapping in Isfahan-Khomein strip which has been introduced as one of zinc and leads mineral scopes in Iran. This area which is composed of several zinc and lead ore deposits has been considered as the target area. Fuzzy integration results of zinc and lead mineralization witness layers confirm the relatively high potential of lead and zinc mineralization in this region having a northwest-southeast trend and involving more than 90 percent of the known indices and ore deposits of the region. In this research, it was shown that the results of TOPSIS-Neuro-Fuzzy integrated model (a combination of neural network and fuzzy logic) have increased the resolution of talented areas from the areas with no mineralization potential in comparison with the fuzzy method individually.展开更多
Iron oxides and lead-zinc deposits in host rocks located in ten drainage basins in the coastal plain of the Red Sea,Egypt,have been subjected to important mining activities.The drainage basins were analyzed to estimat...Iron oxides and lead-zinc deposits in host rocks located in ten drainage basins in the coastal plain of the Red Sea,Egypt,have been subjected to important mining activities.The drainage basins were analyzed to estimate the transportations of these minerals. Fourteen soil samples and fifteen plant samples were collected from sites located in the basin and also in neighboring area and chemically analyzed.In展开更多
In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction s...In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction system was established and the sulfidation thermodynamics of lead and zinc carbonate was calculated with the software HSC 5.0. The effects of roasting temperature,molar ratio of sulphur to lead and zinc carbonate and reaction time in the first step roasting, and holding temperature and time in the second roasting on the sulfidation extent were studied at a laboratory-scale. The experimental results show that the sulfidation extents of lead and zinc are 96.50% and 97.29% under the optimal conditions, respectively, and the artificial galena, sphalerite and wurtzite were formed. By the novel sulfidizing process, it is expected that the sulphides can be recovered by conventional flotation technology.展开更多
Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal...Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal and vertical zoning, from the base(center) of the ore body to the top(outermost), the mineral zones are as follows. I-1: coarse-grained pyrite and a little puce sphalerite;I-2: brown sphalerite, galena, and ferro-dolomite;I-3: galena, sandy beige and pale yellow sphalerite, and calcite;and I-4: fine-grained pyrite, dolomite, and calcite. Among them, sphalerite is the landmark mineral of different zoning. From I-1 to I-3, the color of sphalerite changes from dark to light, its crystalline size changes from coarse to fine, and its structure changes from disseminated to veinlet. This mineral zoning is seen not only on a microscopic scale, but is also clear on a mesoscopic and macroscopic scale. It is caused by the order of the sphalerite and galena precipitation. We studied the metallic minerals and fluid inclusions using a thermodynamic phase diagram method, such as lgfO2–lgfS2, pH–lgfO2, pH–lg[Pb^2+] and pH–lg[HS^-], discussed the constraints on the order of the sphalerite and galena precipitation in the migration and precipitation process of lead and zinc under different pH values, oxygen fugacity, sulfur fugacity, and ionic activity. We also explain the formation mechanism and propose that the main controlling factor of the order of the sphalerite and galena precipitation is sulfur fugacity.展开更多
The local structure of an alternative Pb(Zn1/3Nb2/3)O3-based perovskite ceramic is investigated. The 0.07BaTiO33-0.93Pb(Zn1/3Nb2/3)O3 ceramic is synthesized using a combination of Zn3Nb2O8 B-site precursor and BaT...The local structure of an alternative Pb(Zn1/3Nb2/3)O3-based perovskite ceramic is investigated. The 0.07BaTiO33-0.93Pb(Zn1/3Nb2/3)O3 ceramic is synthesized using a combination of Zn3Nb2O8 B-site precursor and BaTiO33 perovskite phase stabilizer. Then, x-ray absorption spectroscopy and density functional theory are employed to calculate the local structure configuration and formation energy of the prepared samples. Ba2+ is found to replace Pb2+ in AA-site with Zn2+ occupying BB-site in Pb(Zn1/3Nb2/3)O3, while in the neighboring structure, Ti4+4+ replaces Nb5+5+ in BB-site with Pb2+2+ occupying AA-site. With the substitution of BaTiO33 in Pb(Zn1/3Nb2/3)O3, the bond length between Zn2+ and Pb2+ is longer than that of the typical perovskite phase of Pb(Zn1/3Nb2/3)O3. This indicates the key role of BaTiO33 in decreasing the steric hindrance of Pb2+ lone pair, and the mutual interactions between Pb2+ lone pair and Zn2+ and the formation energy is seen to decrease. This finding of the formation energy and local structure configuration relationship can further extend a fundamental understanding of the role of BaTiO33 in stabilizing the perovskite phase in PbZn13Nb23O3-based materials, which in turn will lead to an improved preparation technique for desired electrical properties.展开更多
Qinling-type Pb-Zn deposits are located in the Qinling fold belt, occurring in the fine-clastic and carbonate rocks of the Devonian marine facies. They are reformed sedimentary deposits originating from hydrothermal w...Qinling-type Pb-Zn deposits are located in the Qinling fold belt, occurring in the fine-clastic and carbonate rocks of the Devonian marine facies. They are reformed sedimentary deposits originating from hydrothermal waters, and may be subdivided into 2 subtypes: hydrothermal sedimentary deposits (Changba subtype) and reformed hydrothermal sedimentary deposits (Bijiashan-Qiandongshan subtype). In comparison with some of the famous Palaeozoic Pb-Zn deposits in the world, the Qinling-type Pb-Zn deposits constitute an independent type, which possesses some characteristics of both hydrothermal sedimentary deposits (Meggen type) and reformed hydrothermal deposits (Mississippi Valley type).展开更多
这是一篇矿山生态修复领域的论文。矿山开发过程中不可避免产生大量废石,废石中重金属元素在风化、淋溶等作用下释放,将对矿区周边水土环境质量产生影响。为了研究某铅锌矿废石重金属元素淋溶规律,分析了该废石的化学组成和产酸潜力。...这是一篇矿山生态修复领域的论文。矿山开发过程中不可避免产生大量废石,废石中重金属元素在风化、淋溶等作用下释放,将对矿区周边水土环境质量产生影响。为了研究某铅锌矿废石重金属元素淋溶规律,分析了该废石的化学组成和产酸潜力。模拟强酸雨环境下,分析了废石中重金属元素溶出率及淋溶前后废石的矿物组成。结果表明:该废石中重金属Cu、Pb、Zn、Cd、As元素无独立矿物,在废石中分散赋存;废石酸中和能力较高,净产酸量NAG为0 kg H_(2)SO_(4)/t,无产酸潜力。在模拟强酸雨淋溶实验中,淋出液pH值均呈弱碱性,这与废石含较多的碱性矿物有关,废石具有一定的酸缓冲能力;第1轮淋溶过程Cu、Pb、Zn、Cd、As元素随淋溶时间延长累积溶出率逐渐升高;第2轮淋溶2周期后Cu、Pb、Zn、Cd元素累积溶出率趋于稳定,后续基本不溶出;As元素累积溶出率随淋溶时间延长而升高;总体而言,废石中重金属溶出率低。废石淋溶前后矿物成分不变,矿物含量略有变化。本文可为矿山废石堆场管理及其周边重金属污染防治提供依据。展开更多
基金Project (2007BAC03A11-07) supported by the Ministry of Science and Technology of ChinaProject (KZCX3-SW-437) supported by the Chinese Academy of SciencesProjects (41040014,40571008) supported by the National Natural Science Foundation of China
文摘Nonferrous mining activities are some of the largest sources of heavy metals emissions into the environment and China is one of the largest producers and consumers of lead and zinc in the world.The cumulative productions and emissions of lead and zinc from mining-related activities in China were estimated.Up to 2007,the cumulative productions of lead and zinc in China were estimated to be about 6.69 and 12.59 Mt,respectively;and about 1.62 Mt lead and 3.32 Mt zinc emitted into the ambient environment during the mining,processing and smelting activities,representing 24.39% and 26.36% cumulative production,respectively.Among these three types of mining-related activities,mineral processing contributes the most to the total emission of 50.67% lead and 45.51% zinc.
文摘This study focused on the influence of base metal mining on heavy metal levels in soils and plants in the vicinity of Arufu lead-zinc mine, Nigeria. Soil samples (0-15 cm depth) and plant samples were collected from cul-tivated farmlands in and around the mine, the unmineralized site and a nearby forest (the control site). The samples were analyzed for heavy metals (Fe, Zn, Mn, Cu, Pb, Cr and Cd) by Atomic Absorption Spectrophotometry (AAS). The physical properties of soils (pH and LOI) were also measured. Results showed that soils from cultivated farm-lands have neutral pH values (6.5-7.5), and low organic matter contents (<10%). Levels of Zn, Pb and Cd in culti-vated soils were higher than the concentrations obtained from the control site. These heavy metals are most probably sourced from mining and agricultural activities in the study area. Heavy metal concentrations measured in plant parts decreased in the order of rice leaves>cassava tubers>peelings. In the same plant species, metal levels decreased in the order of Zn>Fe>Mn>Cu>Pb>Cr>Cd. Most heavy metals were found in plant parts at average concentrations normally observed in plants grown in uncontaminated soil, however, elevated concentrations of Pb and Cd were found in a few cassava samples close to the mine dump. A stepwise linear regression analysis identified soil metal contents, pH and LOI as some of the factors influencing soil-plant metal uptake.
基金Supported by the Natural Science Foundation of Hainan Province(411102)the Scientific Research Innovation Project for College Graduates of Hainan Normal University(Hsyx2015-33)the College Students Science and Technology Innovation Project in Hainan Province(cxcyxj2017016)
文摘[Objectives] The research was conducted to study characteristics of bioavailable levels pollution of heavy metals in the surface soil of the lead-zinc mine in Changhua.[Methods] A total of 56 surface samples were collected from the 3 study zones (peripheral zone, reclamation zone and tailing zone) located at the lead-zine mine in Changhua. Based on total and bioavailable heavy metals (Pb, Zn, Cu and Cd) in soils, the correlation of total content with bioavailable content was analyzed, and their pollution characteristics were assessed by methods of single factor pollution index, Nemerow pollution index, geological accumulation index and potential ecological risk index.[Results] (i) The surface soils were polluted by Pb, Zn, Cu, Cd in different degrees, and the overall trend of the contents of the 4 heavy metals was in order of Cd 〉 Pb 〉 Zn 〉 Cu. The average excess multiple of heavy metals of total and bioavailable content in soils were in the order of peripheral zone 〉 tailing zone 〉 reclaimed zone, and their pollution degrees were tailing zone 〉 peripheral zone 〉 reclaimed zone. (ii) In general, the total and bioavailable contents of Pb, Zn, Cu, Cd showed a significant correlation, but were not correlated in each study zone. (iii) Pollution degrees of the study zones were in the order of tailing zone 〉 peripheral zone 〉 reclamation zone. The pollutions of heavy metals Pb and Cd were more serious, especially Cd reached high levels of pollution degree, and the pollution degrees of Zn, Cu were lighter. Contributors of ecological risk were mainly Cd, Pb and Cu, and the contribution of Cd achieved more than 90 %, making it the main source of pollution.[Conclusions] The results not only revealed the pollution status of heavy metals in the surface soil of the abandoned coal mine, but also could provide scientific guidance for reasonable utilization and ecological recovery of the land.
文摘This article analyzes the role of oxygen in lead zinc metallurgy,including shortening the metallurgical process,promoting energy conservation and environmental protection,improving metallurgical strength,enhancing raw material adaptability,and enhancing comprehensive recovery efficiency.This article introduces different lead zinc metallurgical processes and their oxygen consumption characteristics,including oxygen enriched side blowing lead smelting,oxygen bottom blowing lead smelting,oxygen enriched top blowing lead smelting,flash smelting lead,oxygen pressure leaching zinc smelting,and atmospheric pressure oxygen leaching zinc smelting.It is pointed out that oxygen enhanced metallurgy is the direction for the transformation and upgrading of lead zinc metallurgy.
文摘Iran is located on a silver, lead, and zinc belt and according to the latest studies holds 11 million tons of lead, zinc, and silver stones which constitute 4 percent of global resources. Considering that mineral materials are explored in an uncertain space, exploration investment risk is an inseparable part of these activities. The important fact is to minimize the effect of this undesired factor in exploration. To achieve this, it is required that exploration activities and withdrawals are performed in a certain framework in which risk minimization is considered. Using mineral potential modelling for determining promising zones which should be taken into consideration in more detailed stages could make achieving the purpose possibly. This work is aimed at applying fuzzy neural network and TOPSIS methods simultaneously in order to explore zinc and lead resources. In this article, geological, telemetry, geophysics, and geochemistry data is integrated using fuzzy-neural network (neuro fuzzy) and using TOPSIS method rating for lead and zinc ore deposit potential mapping in Isfahan-Khomein strip which has been introduced as one of zinc and leads mineral scopes in Iran. This area which is composed of several zinc and lead ore deposits has been considered as the target area. Fuzzy integration results of zinc and lead mineralization witness layers confirm the relatively high potential of lead and zinc mineralization in this region having a northwest-southeast trend and involving more than 90 percent of the known indices and ore deposits of the region. In this research, it was shown that the results of TOPSIS-Neuro-Fuzzy integrated model (a combination of neural network and fuzzy logic) have increased the resolution of talented areas from the areas with no mineralization potential in comparison with the fuzzy method individually.
文摘Iron oxides and lead-zinc deposits in host rocks located in ten drainage basins in the coastal plain of the Red Sea,Egypt,have been subjected to important mining activities.The drainage basins were analyzed to estimate the transportations of these minerals. Fourteen soil samples and fifteen plant samples were collected from sites located in the basin and also in neighboring area and chemically analyzed.In
基金Project(51204210)supported by the National Natural Science Foundation of ChinaProject(2011AA061001)supported by the High-Tech Research and Development Program of ChinaProject(2012BAC12B04)supported by the National Science&Technology During the12th Five-Year Plan Period,China
文摘In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction system was established and the sulfidation thermodynamics of lead and zinc carbonate was calculated with the software HSC 5.0. The effects of roasting temperature,molar ratio of sulphur to lead and zinc carbonate and reaction time in the first step roasting, and holding temperature and time in the second roasting on the sulfidation extent were studied at a laboratory-scale. The experimental results show that the sulfidation extents of lead and zinc are 96.50% and 97.29% under the optimal conditions, respectively, and the artificial galena, sphalerite and wurtzite were formed. By the novel sulfidizing process, it is expected that the sulphides can be recovered by conventional flotation technology.
基金Projects(41572060,41802089,U1133602)supported by the National Natural Science Foundation of ChinaProject(2017M610614)supported by the Postdoctoral Science Foundation,ChinaProjects(2008,2012)supported by the YM Lab [2011] and Innovation Team of Yunnan Province and KMUST,China
文摘Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal and vertical zoning, from the base(center) of the ore body to the top(outermost), the mineral zones are as follows. I-1: coarse-grained pyrite and a little puce sphalerite;I-2: brown sphalerite, galena, and ferro-dolomite;I-3: galena, sandy beige and pale yellow sphalerite, and calcite;and I-4: fine-grained pyrite, dolomite, and calcite. Among them, sphalerite is the landmark mineral of different zoning. From I-1 to I-3, the color of sphalerite changes from dark to light, its crystalline size changes from coarse to fine, and its structure changes from disseminated to veinlet. This mineral zoning is seen not only on a microscopic scale, but is also clear on a mesoscopic and macroscopic scale. It is caused by the order of the sphalerite and galena precipitation. We studied the metallic minerals and fluid inclusions using a thermodynamic phase diagram method, such as lgfO2–lgfS2, pH–lgfO2, pH–lg[Pb^2+] and pH–lg[HS^-], discussed the constraints on the order of the sphalerite and galena precipitation in the migration and precipitation process of lead and zinc under different pH values, oxygen fugacity, sulfur fugacity, and ionic activity. We also explain the formation mechanism and propose that the main controlling factor of the order of the sphalerite and galena precipitation is sulfur fugacity.
基金Supported by the Thailand Research Fund under Grant No TRG5880097
文摘The local structure of an alternative Pb(Zn1/3Nb2/3)O3-based perovskite ceramic is investigated. The 0.07BaTiO33-0.93Pb(Zn1/3Nb2/3)O3 ceramic is synthesized using a combination of Zn3Nb2O8 B-site precursor and BaTiO33 perovskite phase stabilizer. Then, x-ray absorption spectroscopy and density functional theory are employed to calculate the local structure configuration and formation energy of the prepared samples. Ba2+ is found to replace Pb2+ in AA-site with Zn2+ occupying BB-site in Pb(Zn1/3Nb2/3)O3, while in the neighboring structure, Ti4+4+ replaces Nb5+5+ in BB-site with Pb2+2+ occupying AA-site. With the substitution of BaTiO33 in Pb(Zn1/3Nb2/3)O3, the bond length between Zn2+ and Pb2+ is longer than that of the typical perovskite phase of Pb(Zn1/3Nb2/3)O3. This indicates the key role of BaTiO33 in decreasing the steric hindrance of Pb2+ lone pair, and the mutual interactions between Pb2+ lone pair and Zn2+ and the formation energy is seen to decrease. This finding of the formation energy and local structure configuration relationship can further extend a fundamental understanding of the role of BaTiO33 in stabilizing the perovskite phase in PbZn13Nb23O3-based materials, which in turn will lead to an improved preparation technique for desired electrical properties.
文摘Qinling-type Pb-Zn deposits are located in the Qinling fold belt, occurring in the fine-clastic and carbonate rocks of the Devonian marine facies. They are reformed sedimentary deposits originating from hydrothermal waters, and may be subdivided into 2 subtypes: hydrothermal sedimentary deposits (Changba subtype) and reformed hydrothermal sedimentary deposits (Bijiashan-Qiandongshan subtype). In comparison with some of the famous Palaeozoic Pb-Zn deposits in the world, the Qinling-type Pb-Zn deposits constitute an independent type, which possesses some characteristics of both hydrothermal sedimentary deposits (Meggen type) and reformed hydrothermal deposits (Mississippi Valley type).
文摘这是一篇矿山生态修复领域的论文。矿山开发过程中不可避免产生大量废石,废石中重金属元素在风化、淋溶等作用下释放,将对矿区周边水土环境质量产生影响。为了研究某铅锌矿废石重金属元素淋溶规律,分析了该废石的化学组成和产酸潜力。模拟强酸雨环境下,分析了废石中重金属元素溶出率及淋溶前后废石的矿物组成。结果表明:该废石中重金属Cu、Pb、Zn、Cd、As元素无独立矿物,在废石中分散赋存;废石酸中和能力较高,净产酸量NAG为0 kg H_(2)SO_(4)/t,无产酸潜力。在模拟强酸雨淋溶实验中,淋出液pH值均呈弱碱性,这与废石含较多的碱性矿物有关,废石具有一定的酸缓冲能力;第1轮淋溶过程Cu、Pb、Zn、Cd、As元素随淋溶时间延长累积溶出率逐渐升高;第2轮淋溶2周期后Cu、Pb、Zn、Cd元素累积溶出率趋于稳定,后续基本不溶出;As元素累积溶出率随淋溶时间延长而升高;总体而言,废石中重金属溶出率低。废石淋溶前后矿物成分不变,矿物含量略有变化。本文可为矿山废石堆场管理及其周边重金属污染防治提供依据。