SiO2 nanoparticles were used to regulate the crystallizing process of lead halide perovskite films prepared by the sequential deposition method,which was used in the low-temperature-processed,carbon-electrode-basing,h...SiO2 nanoparticles were used to regulate the crystallizing process of lead halide perovskite films prepared by the sequential deposition method,which was used in the low-temperature-processed,carbon-electrode-basing,hole-conductor-free planar perovskite solar cells.It was observed that,after adding small amount of SiO2 precursor(1 vol%)into the lead iodide solution,performance parameters of open-circuit voltage,short-circuit current and fill factor were all upgraded,which helped to increase the power conversion efficiency(reverse scan)from 11.44(±1.83)%(optimized at 12.42%)to 14.01(±2.14)%(optimized at 15.28%,AM 1.5G,100 mW/cm^2).Transient photocurrent decay curve measurements showed that,after the incorporation of SiO2 nanoparticles,charge extraction was accelerated,while transient photovoltage decay and dark current curve tests both showed that recombination was retarded.The improvement is due to the improved crystallinity of the perovskite film.X-ray diffraction and scanning electron microscopy studies observed that,with incorporation of amorphous SiO2 nanoparticles,smaller crystallites were obtained in lead iodide films,while larger crystallites were achieved in the final perovskite film.This study implies that amorphous SiO2 nanoparticles could regulate the coarsening process of the perovskite film,which provides an effective method in obtaining high quality perovskite film.展开更多
Driven by their many unique features,perovskite solar cells(PSCs)have become one of the most promising candidates in the photovoltaic field.Two-step preparation of perovskite film is advantageous for its higher stabil...Driven by their many unique features,perovskite solar cells(PSCs)have become one of the most promising candidates in the photovoltaic field.Two-step preparation of perovskite film is advantageous for its higher stability and reproducibility compared to the one-step method,which is more suitable for practical application.However,the incomplete conversion of the dense lead iodide(PbI_(2))layer during the sequential spin-coating of formamidinium/methylammonium(FA^(+)/MA^(+))organic amine salts severely affect the performance of PSCs.Herein,sodium bicarbonate(NaHCO_(3))is used to induce the formation of porous PbI_(2),which facilitates the penetration of the FA^(+)/MA^(+)ions and the formation of a perovskite film with high crystallinity and large grain microstructure.Meanwhile,the introduction of Na^(+)not only improves the energetic alignment of the PSC,but also increases the conductivity via p-doping.As a result,the optimized NaHCO_(3)-modified PSC achieves a champion power conversion efficiency of 24.0% with suppressed hysteresis.Moreover,the significant reduction in defect density and ion migration as well as a mild alkaline environment enhance the stability of device.The unencapsulated NaHCO_(3)-modified PSCs maintain over 90% of their original efficiency upon storage in ambient air(30%–40% relative humidity)for 2160 h.We have demonstrated an ingenious strategy for controlling the quality of perovskite and improving the performance of device by low-temperature foaming of simple inorganic molecules of NaHCO_(3).展开更多
Halide perovskite single crystals(SCs)have attracted much attention for their application in high-performance x-ray detectors owing to their desirable properties,including low defect density,high mobility–lifetime pr...Halide perovskite single crystals(SCs)have attracted much attention for their application in high-performance x-ray detectors owing to their desirable properties,including low defect density,high mobility–lifetime product(μτ),and long carrier diffusion length.However,suppressing the inherent defects in perovskites and overcoming the ion migration primarily caused by these defects remains a challenge.This study proposes a facile process for dipping Cs0.05FA0.9MA0.05PbI3 SCs synthesized by a solution-based inverse temperature crystallization method into a 2-phenylethylammonium iodide(PEAI)solution to reduce the number of defects,inhibit ion migration,and increase x-ray sensitivity.Compared to conventional spin coating,this simple dipping process forms a two-dimensional PEA2PbI4 layer on all SC surfaces without further treatment,effectively passivating all surfaces of the inherently defective SCs and minimizing ion migration.As a result,the PEAI-treated perovskite SC-based x-ray detector achieves a record x-ray sensitivity of 1.3×10^(5)μC Gyair^(-1) cm^(-2) with a bias voltage of 30 V at realistic clinical dose rates of 1–5 mGy s^(-1)(peak potential of 110 kVp),which is 6 times more sensitive than an untreated SC-based detector and 3 orders of magnitude more sensitive than a commercialα-Se-based detector.Furthermore,the PEAI-treatedperovskite SC-based x-ray detector exhibits a low detection limit(73 nGy s^(-1)),improved x-ray response,and clear x-ray images by a scanning method,highlighting the effectiveness of the PEAI dipping approach for fabricating next-generation x-ray detectors.展开更多
基金Project supported by the Fundamental Research Funds for the Central South University,China(Grant No.2019zzts426)the National Natural Science Foundation of China(Grant Nos.61172047,61774170,and 51673218)+1 种基金the Scientific and Technological Project of Hunan Provincial Development and Reform Commission,China,the National Science Foundation,USA(Grant Nos.CBET-1437656 and DMR-1903962)the Innovation-Driven Project of Central South University(Grant No.2020CX006)。
文摘SiO2 nanoparticles were used to regulate the crystallizing process of lead halide perovskite films prepared by the sequential deposition method,which was used in the low-temperature-processed,carbon-electrode-basing,hole-conductor-free planar perovskite solar cells.It was observed that,after adding small amount of SiO2 precursor(1 vol%)into the lead iodide solution,performance parameters of open-circuit voltage,short-circuit current and fill factor were all upgraded,which helped to increase the power conversion efficiency(reverse scan)from 11.44(±1.83)%(optimized at 12.42%)to 14.01(±2.14)%(optimized at 15.28%,AM 1.5G,100 mW/cm^2).Transient photocurrent decay curve measurements showed that,after the incorporation of SiO2 nanoparticles,charge extraction was accelerated,while transient photovoltage decay and dark current curve tests both showed that recombination was retarded.The improvement is due to the improved crystallinity of the perovskite film.X-ray diffraction and scanning electron microscopy studies observed that,with incorporation of amorphous SiO2 nanoparticles,smaller crystallites were obtained in lead iodide films,while larger crystallites were achieved in the final perovskite film.This study implies that amorphous SiO2 nanoparticles could regulate the coarsening process of the perovskite film,which provides an effective method in obtaining high quality perovskite film.
基金The authors acknowledge the joint financial support from the National Natural Science Foundation of China(Nos.51972123,U1705256,22271106,and U20A20150)。
文摘Driven by their many unique features,perovskite solar cells(PSCs)have become one of the most promising candidates in the photovoltaic field.Two-step preparation of perovskite film is advantageous for its higher stability and reproducibility compared to the one-step method,which is more suitable for practical application.However,the incomplete conversion of the dense lead iodide(PbI_(2))layer during the sequential spin-coating of formamidinium/methylammonium(FA^(+)/MA^(+))organic amine salts severely affect the performance of PSCs.Herein,sodium bicarbonate(NaHCO_(3))is used to induce the formation of porous PbI_(2),which facilitates the penetration of the FA^(+)/MA^(+)ions and the formation of a perovskite film with high crystallinity and large grain microstructure.Meanwhile,the introduction of Na^(+)not only improves the energetic alignment of the PSC,but also increases the conductivity via p-doping.As a result,the optimized NaHCO_(3)-modified PSC achieves a champion power conversion efficiency of 24.0% with suppressed hysteresis.Moreover,the significant reduction in defect density and ion migration as well as a mild alkaline environment enhance the stability of device.The unencapsulated NaHCO_(3)-modified PSCs maintain over 90% of their original efficiency upon storage in ambient air(30%–40% relative humidity)for 2160 h.We have demonstrated an ingenious strategy for controlling the quality of perovskite and improving the performance of device by low-temperature foaming of simple inorganic molecules of NaHCO_(3).
基金Agency for Defense Development,Grant/Award Number:UI220006TDDefense Acquisition Program Administration(DAPA),Grant/Award Number:912765601Korea Institute of Energy Technology Evaluation and Planning,Grant/Award Number:RS-2023-00237035。
文摘Halide perovskite single crystals(SCs)have attracted much attention for their application in high-performance x-ray detectors owing to their desirable properties,including low defect density,high mobility–lifetime product(μτ),and long carrier diffusion length.However,suppressing the inherent defects in perovskites and overcoming the ion migration primarily caused by these defects remains a challenge.This study proposes a facile process for dipping Cs0.05FA0.9MA0.05PbI3 SCs synthesized by a solution-based inverse temperature crystallization method into a 2-phenylethylammonium iodide(PEAI)solution to reduce the number of defects,inhibit ion migration,and increase x-ray sensitivity.Compared to conventional spin coating,this simple dipping process forms a two-dimensional PEA2PbI4 layer on all SC surfaces without further treatment,effectively passivating all surfaces of the inherently defective SCs and minimizing ion migration.As a result,the PEAI-treated perovskite SC-based x-ray detector achieves a record x-ray sensitivity of 1.3×10^(5)μC Gyair^(-1) cm^(-2) with a bias voltage of 30 V at realistic clinical dose rates of 1–5 mGy s^(-1)(peak potential of 110 kVp),which is 6 times more sensitive than an untreated SC-based detector and 3 orders of magnitude more sensitive than a commercialα-Se-based detector.Furthermore,the PEAI-treatedperovskite SC-based x-ray detector exhibits a low detection limit(73 nGy s^(-1)),improved x-ray response,and clear x-ray images by a scanning method,highlighting the effectiveness of the PEAI dipping approach for fabricating next-generation x-ray detectors.