期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Influence of Vertical Irregularity on the Seismic Behavior of Base Isolated RC Structures with Lead Rubber Bearings under Pulse-Like Earthquakes
1
作者 Ali Mahamied Amjad AYasin +2 位作者 Yazan Alzubi Jamal Al Adwan Issa Mahamied 《Structural Durability & Health Monitoring》 EI 2023年第6期501-519,共19页
Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literatu... Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature.On the other hand,investigations regarding the irregular base-isolated reinforced concrete structures’performance when subjected to pulse-like earthquakes are very scarce.The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands.Thus,this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures.Within the study scope,investigations related to the impact of the pulse-like earthquake characteristics,irregularity type,and isolator properties will be conducted.To do so,different values of damping ratios of the base isolation system were selected to investigate the efficiency of the lead rubber-bearing isolator.In general,the outcomes of the study have shown the significance of vertical irregularity on the performance of base-isolated structures and the considerable effect of pulse-like ground motions on the buildings’behavior. 展开更多
关键词 Reinforced concrete low-rise structure vertical irregularity the influence of pulse-like earthquake characteristics lead rubber bearing isolators nonlinear response history analysis
下载PDF
Effect of Alternation of Aging and Seawater Erosion on Properties of Rubber Material Used in Lead Rubber Bearing
2
作者 Yanmin Li Guifeng Zhao +1 位作者 Yuhong Ma Rong Liu 《Journal of Renewable Materials》 SCIE EI 2022年第6期1641-1658,共18页
An artificially accelerated alternation of aging and seawater erosion test of rubber materials used in lead rubber bearing(LRB)was performed,mainly to study the time-varying laws of rubber materials mechanical propert... An artificially accelerated alternation of aging and seawater erosion test of rubber materials used in lead rubber bearing(LRB)was performed,mainly to study the time-varying laws of rubber materials mechanical properties.Time-varying laws of the Mooney–Rivlin and Neo-Hookean constitutive parameters of rubber materials under the alternation of aging and seawater erosion were also analyzed.Results indicate that the rubber material mechanical properties were significantly affected by alternation of aging and seawater erosion.Hardness and elongation stress increased exponentially with test time.And 120 days after the test,the hardness increased by 14%,the maximum percentage increase in stress of 124.76%occurred at 100%constant elongation and the minimum percentage increase in stress of 68.32%occurred at 300%constant elongation;Tensile strength and elongation at break decreased by 44.96%and 53.09%.Besides,constitutive parameters of Mooney–Rivlin and Neo-Hookean all changed greatly with test duration.Finally,time-varying laws of constitutive parameters were verified by comparing the simulated and experimental results of the lead rubber bearing’s stiffness.Research results are of great significance to the seismic performance research and life-cycle performance analysis of offshore traffic engineering such as cross-sea bridges and bridges in the marine environment. 展开更多
关键词 Alternation of aging and seawater erosion lead rubber bearing rubber material properties constitutive parameters time-varying law
下载PDF
Effect of Lead-Rubber Bearing Isolators in Reducing Seismic Damage for a High-Rise Building in Comparison with Normal Shear Wall System
3
作者 Mahmoud Fakih Jaafar Hallal +1 位作者 Hassan Darwich Hala Damerji 《Structural Durability & Health Monitoring》 EI 2021年第3期247-260,共14页
Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dyn... Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dynamic behavior of a high-rise RC building with dynamic isolators(lead-rubber-bearing),in comparison with a traditional shear wall system of the same building.Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake.In order to clarify the influence of incorporating lead rubber bearing isolators in the seismic response and in reducing seismic damages;a comparative study is performed between a fixed base system(shear wall system)and an isolated base system(Lead Rubber Bearing)on an irregular high rise reinforced concrete(RC)building located in Beirut consisting of 48 storeys almost asymmetric orthogonally.For this purpose,a non-linear analysis of a real earthquake acceleration record(EI Centro seismic signal)is conducted,so that the mode shapes,the damping ratio and the natural frequencies of the two models are obtained using ETABS software.The results prove a substantial elongation of the building period,as well as a reduction in the building displacement,the roof acceleration,the inter-storey drift ratio and the base shear force of isolated building relative to fixed-base building.This study proves that this technology is applicable to high rise buildings with acceptable results. 展开更多
关键词 Seismic damage non-linear time history analysis high-rise RC building seismic response analysis lead rubber bearing
下载PDF
Multi dimensional Seismic Response Analysis of Base Isolated Frame Structure with 3D Isolator 被引量:1
4
作者 XiongShishu HuangLiting ChenJinfeng SuJingsu 《Journal of China University of Geosciences》 SCIE CSCD 2005年第1期66-71,78,共7页
The three dimensional lead rubber dish spring bearing (3DB) is proposed in this paper. The 3DB is composed of lead rubber bearing (LRB) and dish spring bearing (DSB) with damper in series. The 3DB put forward in t... The three dimensional lead rubber dish spring bearing (3DB) is proposed in this paper. The 3DB is composed of lead rubber bearing (LRB) and dish spring bearing (DSB) with damper in series. The 3DB put forward in this paper is effective in the resolution of difficulties in strong vertical capacity and vertical damping of three dimensional isolation bearings. It effectively suppresses rocking motions as well. The analytical model and motion equations of multi dimensional seismic responses of 3D base isolated frame structures are established. Taking a five storey frame structure as an example, an extensive simulation analysis is carried out. The results show that the 3D base isolated structure with the proposed 3DB is effective in 3D isolation; it can reduce seismic responses by 50 % compared to a non isolated structure. Therefore, the 3D isolation problem in building can be solved easily and effectively with the 3DB proposed in this paper. 展开更多
关键词 D base isolator multi earthquake seismic responses lead rubber bearing dish spring bearing.
下载PDF
Numerical investigation on seismic performance of a shallow buried underground structure with isolation devices
5
作者 Jianning Wang Guangyu Zhang +2 位作者 Haiyang Zhuang Jing Yang Chen Li 《Earthquake Research Advances》 CSCD 2022年第4期11-21,共11页
A design procedure for improving the seismic performance of unequal-span underground structures by installing isolation devices at the top end of columns is proposed based on the seismic failure mode of frame-type und... A design procedure for improving the seismic performance of unequal-span underground structures by installing isolation devices at the top end of columns is proposed based on the seismic failure mode of frame-type underground structures and the design concept of critical support columns.A two-dimensional finite element model(FEM)for a soil-underground structure with an unequal-span interaction system was established to shed light on the effects of a complex subway station with elastic sliding bearings(ESB)and lead rubber bearings(LRB)on seismic mitigation.It was found that the stiffness and internal force distribution of the underground structure changed remarkably with the installation of isolation devices at the top end of the columns.The constraints of the beam-column joints were significantly weakened,resulting in a decrease in the overall lateral stiffness and an increase in the structural lateral displacement.The introduction of the isolation device effectively reduces the internal force and seismic damage of the frame column;however,the tensile damage to the isolation structure,such as the roof,bottom plate,and sidewall,significantly increased compared to those of the non-isolation structure.Although the relative slip of the ESB remains within a controllable range under strong earthquake excitation as well as frame columns with stable vertical support and self-restoration functions,the LRB shows a better performance during seismic failure and better lateral displacement response of the unequal-span underground structure.The analysis results provide new ideas and references for promoting the application of seismic isolation technology in underground structures. 展开更多
关键词 Underground structure Seismic performance Isolation device Elastic sliding bearing lead rubber bearing Soil-structure interaction
下载PDF
Shake table tests of different seismic isolation systems on a large scale structure subjected to low to moderate earthquakes 被引量:1
6
作者 Nefize Shaban Alp Caner 《Journal of Traffic and Transportation Engineering(English Edition)》 2018年第6期480-490,共11页
Seismic isolation systems designed for extreme events may likely experience low to moderate earthquakes during the design life of the structure rather than the extreme event itself.In new seismic building design codes... Seismic isolation systems designed for extreme events may likely experience low to moderate earthquakes during the design life of the structure rather than the extreme event itself.In new seismic building design codes, low and moderate earthquakes are also mandatory to be investigated in Turkey and some other countries. One of the main reasons is to protect the integrity of non-structural elements or machines during these types of earthquakes. The selection of appropriate seismic isolation is typically decided based on their forcedisplacement characteristics and amount of energy dissipation per cycle. The same energy dissipation per cycle(EDC) can be achieved by high force-low displacement or low force-high displacement response. The focus of this research is given to identify the performance of ball rubber bearing isolation systems compared to different or similar EDC units such as elastomeric bearings and lead rubber bearings through a series of shake table tests performed at low to moderate earthquake levels. Shake table tests were conducted on an almost full scale short span bridge. The tests have revealed that the ball rubber bearings are superior to elastomeric bearings in terms of EDC and can match EDC of LRB. However, although LRB and BRB have the same EDC, BRB is more beneficial to use under low to moderate earthquakes since BRB can transmit less force with larger displacement compared to LRB and LRB can sometimes stay in elastic range with an ineffective EDC as a stiffer elastomeric bearing. 展开更多
关键词 Shake table test Seismic isolation lead rubber bearing (LRB) Ball rubber bearing (BRB) Elastomeric bearing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部