The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded...The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.展开更多
This study consists of the development and presentation of example of seismic isolation system analysis and design for a continuous, 3-span, cast-in-place concrete box girder bridge. It is expected that example is dev...This study consists of the development and presentation of example of seismic isolation system analysis and design for a continuous, 3-span, cast-in-place concrete box girder bridge. It is expected that example is developed for all Lead-Rubber Bearing (LRB) seismic isolation system on piers and abutments which placed in between super-structure and sub-structure. Design forces, displacements, and drifts are given distinctive consideration in accordance with Caltrans Seismic Design Criteria (2004). Most of all, total displacement on design for all LRBs case is reduced comparing with combined lead-rubber and elastomeric bearing system . Therefore, this represents substantial reduction in cost because of reduction of expansion joint. This presents a summary of analysis and design of seismic isolation system by energy mitigation with LRB on bridges.展开更多
Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literatu...Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature.On the other hand,investigations regarding the irregular base-isolated reinforced concrete structures’performance when subjected to pulse-like earthquakes are very scarce.The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands.Thus,this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures.Within the study scope,investigations related to the impact of the pulse-like earthquake characteristics,irregularity type,and isolator properties will be conducted.To do so,different values of damping ratios of the base isolation system were selected to investigate the efficiency of the lead rubber-bearing isolator.In general,the outcomes of the study have shown the significance of vertical irregularity on the performance of base-isolated structures and the considerable effect of pulse-like ground motions on the buildings’behavior.展开更多
The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested fo...The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested for four MLRB specimens and two specimens of the single-lead rubber bearings ( SLRBs). Then, the MLRBs were modeled by the explicit finite element analysis software ANSYS/ LS-DYNA, in order to evaluate the horizontal force-displacement hysteretic curves under static vertical and dynamical horizontal loadings. The disagreement between the tested and theoretical values was less than 11.4%, and MLRBs and SLRBs were similar in vertical stiffness, pre-yield stiffness and yield stiffness.展开更多
An artificially accelerated alternation of aging and seawater erosion test of rubber materials used in lead rubber bearing(LRB)was performed,mainly to study the time-varying laws of rubber materials mechanical propert...An artificially accelerated alternation of aging and seawater erosion test of rubber materials used in lead rubber bearing(LRB)was performed,mainly to study the time-varying laws of rubber materials mechanical properties.Time-varying laws of the Mooney–Rivlin and Neo-Hookean constitutive parameters of rubber materials under the alternation of aging and seawater erosion were also analyzed.Results indicate that the rubber material mechanical properties were significantly affected by alternation of aging and seawater erosion.Hardness and elongation stress increased exponentially with test time.And 120 days after the test,the hardness increased by 14%,the maximum percentage increase in stress of 124.76%occurred at 100%constant elongation and the minimum percentage increase in stress of 68.32%occurred at 300%constant elongation;Tensile strength and elongation at break decreased by 44.96%and 53.09%.Besides,constitutive parameters of Mooney–Rivlin and Neo-Hookean all changed greatly with test duration.Finally,time-varying laws of constitutive parameters were verified by comparing the simulated and experimental results of the lead rubber bearing’s stiffness.Research results are of great significance to the seismic performance research and life-cycle performance analysis of offshore traffic engineering such as cross-sea bridges and bridges in the marine environment.展开更多
Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dyn...Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dynamic behavior of a high-rise RC building with dynamic isolators(lead-rubber-bearing),in comparison with a traditional shear wall system of the same building.Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake.In order to clarify the influence of incorporating lead rubber bearing isolators in the seismic response and in reducing seismic damages;a comparative study is performed between a fixed base system(shear wall system)and an isolated base system(Lead Rubber Bearing)on an irregular high rise reinforced concrete(RC)building located in Beirut consisting of 48 storeys almost asymmetric orthogonally.For this purpose,a non-linear analysis of a real earthquake acceleration record(EI Centro seismic signal)is conducted,so that the mode shapes,the damping ratio and the natural frequencies of the two models are obtained using ETABS software.The results prove a substantial elongation of the building period,as well as a reduction in the building displacement,the roof acceleration,the inter-storey drift ratio and the base shear force of isolated building relative to fixed-base building.This study proves that this technology is applicable to high rise buildings with acceptable results.展开更多
文摘The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.
文摘This study consists of the development and presentation of example of seismic isolation system analysis and design for a continuous, 3-span, cast-in-place concrete box girder bridge. It is expected that example is developed for all Lead-Rubber Bearing (LRB) seismic isolation system on piers and abutments which placed in between super-structure and sub-structure. Design forces, displacements, and drifts are given distinctive consideration in accordance with Caltrans Seismic Design Criteria (2004). Most of all, total displacement on design for all LRBs case is reduced comparing with combined lead-rubber and elastomeric bearing system . Therefore, this represents substantial reduction in cost because of reduction of expansion joint. This presents a summary of analysis and design of seismic isolation system by energy mitigation with LRB on bridges.
文摘Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature.On the other hand,investigations regarding the irregular base-isolated reinforced concrete structures’performance when subjected to pulse-like earthquakes are very scarce.The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands.Thus,this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures.Within the study scope,investigations related to the impact of the pulse-like earthquake characteristics,irregularity type,and isolator properties will be conducted.To do so,different values of damping ratios of the base isolation system were selected to investigate the efficiency of the lead rubber-bearing isolator.In general,the outcomes of the study have shown the significance of vertical irregularity on the performance of base-isolated structures and the considerable effect of pulse-like ground motions on the buildings’behavior.
文摘The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested for four MLRB specimens and two specimens of the single-lead rubber bearings ( SLRBs). Then, the MLRBs were modeled by the explicit finite element analysis software ANSYS/ LS-DYNA, in order to evaluate the horizontal force-displacement hysteretic curves under static vertical and dynamical horizontal loadings. The disagreement between the tested and theoretical values was less than 11.4%, and MLRBs and SLRBs were similar in vertical stiffness, pre-yield stiffness and yield stiffness.
基金This work was supported by the Programme for National Natural Science Foundation of China(52078150,51878196)National Key R&D Program of China(2019YFE0112500)2019 Guangzhou University Full-Time Graduate“Basic Innovation”Project(2019GDJC-D11).
文摘An artificially accelerated alternation of aging and seawater erosion test of rubber materials used in lead rubber bearing(LRB)was performed,mainly to study the time-varying laws of rubber materials mechanical properties.Time-varying laws of the Mooney–Rivlin and Neo-Hookean constitutive parameters of rubber materials under the alternation of aging and seawater erosion were also analyzed.Results indicate that the rubber material mechanical properties were significantly affected by alternation of aging and seawater erosion.Hardness and elongation stress increased exponentially with test time.And 120 days after the test,the hardness increased by 14%,the maximum percentage increase in stress of 124.76%occurred at 100%constant elongation and the minimum percentage increase in stress of 68.32%occurred at 300%constant elongation;Tensile strength and elongation at break decreased by 44.96%and 53.09%.Besides,constitutive parameters of Mooney–Rivlin and Neo-Hookean all changed greatly with test duration.Finally,time-varying laws of constitutive parameters were verified by comparing the simulated and experimental results of the lead rubber bearing’s stiffness.Research results are of great significance to the seismic performance research and life-cycle performance analysis of offshore traffic engineering such as cross-sea bridges and bridges in the marine environment.
文摘Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dynamic behavior of a high-rise RC building with dynamic isolators(lead-rubber-bearing),in comparison with a traditional shear wall system of the same building.Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake.In order to clarify the influence of incorporating lead rubber bearing isolators in the seismic response and in reducing seismic damages;a comparative study is performed between a fixed base system(shear wall system)and an isolated base system(Lead Rubber Bearing)on an irregular high rise reinforced concrete(RC)building located in Beirut consisting of 48 storeys almost asymmetric orthogonally.For this purpose,a non-linear analysis of a real earthquake acceleration record(EI Centro seismic signal)is conducted,so that the mode shapes,the damping ratio and the natural frequencies of the two models are obtained using ETABS software.The results prove a substantial elongation of the building period,as well as a reduction in the building displacement,the roof acceleration,the inter-storey drift ratio and the base shear force of isolated building relative to fixed-base building.This study proves that this technology is applicable to high rise buildings with acceptable results.