The research on the influence of RE on the directional solidified microstructure of tin lead alloy reveals that the addition of RE can cause chopping and irregular lamellar and smaller lamellar spacing. When RE conte...The research on the influence of RE on the directional solidified microstructure of tin lead alloy reveals that the addition of RE can cause chopping and irregular lamellar and smaller lamellar spacing. When RE content increases, the microstructure changes to peritectic structure. Moreover, the eutectic point of Sn Pb alloy deviates because the affinity of RE for Sn, which results in the existence of primary Pb rich phases contained hypocutectic grown layers. Sn RE intermetallic compound has no effect on the solidification of Sn Pb alloy.展开更多
The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the propert...The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the properties of the anodes and rolling techniques during copper electrowinning. The anode process was investigated via anodic polarization curves, cyclic voltammetry curves, electrochemical impedance spectra, and corrosion tests. The microscopic morphology and phase composition of the anodic oxide layers were observed by scanning electron microscopy and X-ray diffraction, respectively. Observable variations in the electrocatalytic activity and reaction kinetics of anodes during electrowinning indicated that the electrochemical behavior of the anodes was strongly affected by the rolling technology. An increase in the rolling number tended to decrease the oxygen evolution overpotential and the corrosion rate of the anodes. These trends are contrary to that of the apparent exchange current density. Furthermore, the intensities of diffraction peaks associated with PbO, PbOx, and α-PbO2 tended to increase with increasing rolling number. In addition, the rolled anodes exhibited a more uniform microstructure. Compared with one-way rolled anodes, the eight-time cross rolled anodes exhibited better electrocatalytic activity and improved corrosion resistance.展开更多
文摘The research on the influence of RE on the directional solidified microstructure of tin lead alloy reveals that the addition of RE can cause chopping and irregular lamellar and smaller lamellar spacing. When RE content increases, the microstructure changes to peritectic structure. Moreover, the eutectic point of Sn Pb alloy deviates because the affinity of RE for Sn, which results in the existence of primary Pb rich phases contained hypocutectic grown layers. Sn RE intermetallic compound has no effect on the solidification of Sn Pb alloy.
基金financial support of the National Natural Science Foundation of China (No.51004056)the Applied Basic Research Foundation of Yunnan Province (No. 2010ZC052)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20125314110011)
文摘The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the properties of the anodes and rolling techniques during copper electrowinning. The anode process was investigated via anodic polarization curves, cyclic voltammetry curves, electrochemical impedance spectra, and corrosion tests. The microscopic morphology and phase composition of the anodic oxide layers were observed by scanning electron microscopy and X-ray diffraction, respectively. Observable variations in the electrocatalytic activity and reaction kinetics of anodes during electrowinning indicated that the electrochemical behavior of the anodes was strongly affected by the rolling technology. An increase in the rolling number tended to decrease the oxygen evolution overpotential and the corrosion rate of the anodes. These trends are contrary to that of the apparent exchange current density. Furthermore, the intensities of diffraction peaks associated with PbO, PbOx, and α-PbO2 tended to increase with increasing rolling number. In addition, the rolled anodes exhibited a more uniform microstructure. Compared with one-way rolled anodes, the eight-time cross rolled anodes exhibited better electrocatalytic activity and improved corrosion resistance.