Nonferrous mining activities are some of the largest sources of heavy metals emissions into the environment and China is one of the largest producers and consumers of lead and zinc in the world.The cumulative producti...Nonferrous mining activities are some of the largest sources of heavy metals emissions into the environment and China is one of the largest producers and consumers of lead and zinc in the world.The cumulative productions and emissions of lead and zinc from mining-related activities in China were estimated.Up to 2007,the cumulative productions of lead and zinc in China were estimated to be about 6.69 and 12.59 Mt,respectively;and about 1.62 Mt lead and 3.32 Mt zinc emitted into the ambient environment during the mining,processing and smelting activities,representing 24.39% and 26.36% cumulative production,respectively.Among these three types of mining-related activities,mineral processing contributes the most to the total emission of 50.67% lead and 45.51% zinc.展开更多
On the basis of an experimental study and thermodynamic calculation, the mechanisms of paragenesis and separation of silver, lead and zinc in the hydrothermal system have been studied. At acidic to nearly neutral pH, ...On the basis of an experimental study and thermodynamic calculation, the mechanisms of paragenesis and separation of silver, lead and zinc in the hydrothermal system have been studied. At acidic to nearly neutral pH, their chloride complexes are stable, and among them the chloride complexes of zinc are most stable. And the sulfide complexes are the dominant species at nearly neutral to alkaline pH, while the sulfide complexes of silver are most stable. With decreasing temperature, , f-{O-2} and increasing pH, the solubilities of silver, lead and zinc will decrease, leading to their deposition and separation. For sulfide complexes, the concentrations of reduced sulfur and pH are two important factors affecting their stabilities. Complexes of different forms and stabilities respond to the variation of conditions to different extents, which gave rise to the paragenesis and separation of silver, lead and zinc in the whole ore-forming process of dissolution, transport and deposition.展开更多
Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal...Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal and vertical zoning, from the base(center) of the ore body to the top(outermost), the mineral zones are as follows. I-1: coarse-grained pyrite and a little puce sphalerite;I-2: brown sphalerite, galena, and ferro-dolomite;I-3: galena, sandy beige and pale yellow sphalerite, and calcite;and I-4: fine-grained pyrite, dolomite, and calcite. Among them, sphalerite is the landmark mineral of different zoning. From I-1 to I-3, the color of sphalerite changes from dark to light, its crystalline size changes from coarse to fine, and its structure changes from disseminated to veinlet. This mineral zoning is seen not only on a microscopic scale, but is also clear on a mesoscopic and macroscopic scale. It is caused by the order of the sphalerite and galena precipitation. We studied the metallic minerals and fluid inclusions using a thermodynamic phase diagram method, such as lgfO2–lgfS2, pH–lgfO2, pH–lg[Pb^2+] and pH–lg[HS^-], discussed the constraints on the order of the sphalerite and galena precipitation in the migration and precipitation process of lead and zinc under different pH values, oxygen fugacity, sulfur fugacity, and ionic activity. We also explain the formation mechanism and propose that the main controlling factor of the order of the sphalerite and galena precipitation is sulfur fugacity.展开更多
Qinling-type Pb-Zn deposits are located in the Qinling fold belt, occurring in the fine-clastic and carbonate rocks of the Devonian marine facies. They are reformed sedimentary deposits originating from hydrothermal w...Qinling-type Pb-Zn deposits are located in the Qinling fold belt, occurring in the fine-clastic and carbonate rocks of the Devonian marine facies. They are reformed sedimentary deposits originating from hydrothermal waters, and may be subdivided into 2 subtypes: hydrothermal sedimentary deposits (Changba subtype) and reformed hydrothermal sedimentary deposits (Bijiashan-Qiandongshan subtype). In comparison with some of the famous Palaeozoic Pb-Zn deposits in the world, the Qinling-type Pb-Zn deposits constitute an independent type, which possesses some characteristics of both hydrothermal sedimentary deposits (Meggen type) and reformed hydrothermal deposits (Mississippi Valley type).展开更多
A type of carbonate-hosted lead–zinc(Pb–Zn)ore deposits, known as Mississippi Valley Type(MVT)deposits, constitutes an important category of lead–zinc ore deposits. Previous studies proposed a fluid-mixing model to...A type of carbonate-hosted lead–zinc(Pb–Zn)ore deposits, known as Mississippi Valley Type(MVT)deposits, constitutes an important category of lead–zinc ore deposits. Previous studies proposed a fluid-mixing model to account for metal precipitation mechanism of the MVT ore deposits, in which fluids with metal-chloride complexes happen to mix with fluids with reduced sulfur, producing metal sulfide deposition. In this hypothesis, however, the detailed chemical kinetic process of mixing reactions, and especially the controlling factors on the metal precipitation are not yet clearly stated. In this paper, a series of mixing experiments under ambient temperature and pressure conditions were conducted to simulate the fluid mixing process, by titrating the metal-chloride solutions, doping withor without dolomite, and using NaHS solution. Experimental results, combined with the thermodynamic calculations, suggest that H_2S, rather than HS^-or S^(2-),dominated the reactions of Pb and/or Zn precipitation during the fluid mixing process, in which metal precipitation was influenced by the stability of metal complexes and the pH. Given the constant concentrations of metal and total S in fluids, the pH was a primary factor controlling the Pb and/or Zn metal precipitation. This is because neutralizing or neutralized processes for the ore-forming fluids can cause instabilities of Pb and/or Zn chloride complexes and re-distribution of sulfur species, and thus can facilitate the hydrolysis of Pb and Zn ions and precipitation of sulfides. Therefore, a weakly acidic to neutral fluid environment is most favorable for the precipitation of Pb and Zn sulfides associated with the carbonate-hosted Pb–Zn deposits.展开更多
The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China...The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China. Sulfides minerals including sphalerite, galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite, quartz, and barite, making this deposit distinct from most lead-zinc deposits in the SYG. This deposit is controlled by tectonic structures, and most mineralization is located along or near faults zones. Emeishan basalts near the ore district might have contributed to the formation of orebodies. The j34S values of sphalerite, galena, pyrite and barite were estimated to be 3.6‰-13.4‰, 3.7‰-9.0‰, -6.4‰ to 29.2‰ and 32.1‰34.7‰, respectively. In view of the similar δ34S values of barite and sulfates being from the Cambrian strata, the sulfur of barite was likely derived from the Cambrian strata. The homogenization temperatures (T ≈ 134--383℃) of fluid inclusions were not suitable for reducing bacteria, therefore, the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district. Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur, it was not the main mechanism. Considering other aspects, it can be suggested that sulfur of sulfides should have been derived from magmatic activities. The δ34S values of sphalerite were found to be higher than those of coexisting galena. The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions, suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.展开更多
The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming f...The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H20-NaCI-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The oreforming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.展开更多
In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on t...In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on these typical deposits, the mechanism of leaching-drawing mineralization of Mesozoic geothermal water and the related model are put forward in this paper in the light of the time interval between rock and formation ages as well as hydrogen, oxygen, sulphur and lead isotope geochemical characteristics. The major metallogenic process occurred in volcanic rock layers. The ore-forming fluids are geothermal water coming from meteoric water and circulating at shallow layers. This geothermal water leached and absorbed ore-forming materials from its country rocks during its flowing (such metallogenic elements as silver, lead-zinc and sulphur mainly came from consolidated volcanic rocks), leading to the formation of meso - epithermal silver deposits.展开更多
Tuotuo River region(E91°-E93°,N33°-N 35°) is located in southwest Qinghai Province,P.R.China.It lies in one of the most important metallogenic belts in China—Northwest Sanjiang Metallogenic Belt,d...Tuotuo River region(E91°-E93°,N33°-N 35°) is located in southwest Qinghai Province,P.R.China.It lies in one of the most important metallogenic belts in China—Northwest Sanjiang Metallogenic Belt,due to which Tuotuo River region can be of very high metal mineral potential not only in Qinghai Province but also nationwide.In this research,multisource data sets including geological,geochemical,geophysical, and remotely sensed images were integrated for mineral potential analysis with GIS technology.Under the guidance of regional metallogenic features and deposit-forming geologic anomaly theories,evidential layers were obtained from these sets,which展开更多
An attempt is made in this paper to describe the following laws governing the distribution of lead-zinc deposits in China: spatial distribution laws, temporal distribution laws, deep level control laws, and deposits a...An attempt is made in this paper to describe the following laws governing the distribution of lead-zinc deposits in China: spatial distribution laws, temporal distribution laws, deep level control laws, and deposits association and zoning laws.展开更多
The paper discusses the tectonic setting of the fortnation of the Dexing giant copper-gold-lead-zinc deposit and its geological features and demonstrates in detail the polygenetic compound mechanism of its formation.
The electrochemical behavior of Mengzi lead-silver-zinc ore flotation system was studied. Based on the electrochemical characteristics of sulfide mineral flotation system, a stage potential control flotation was devel...The electrochemical behavior of Mengzi lead-silver-zinc ore flotation system was studied. Based on the electrochemical characteristics of sulfide mineral flotation system, a stage potential control flotation was developed with the main parameters of pulp potential(φp), pH value and collector dosage. Using N,N’ diphenylamino-dithiolphosphoric acid(NNDDC) as a collector, which has good selectivity for galena flotation at pH 8.8 and pulp potential 330 mV, DDTC is used as secondary collector to improve both the grade and recovery of Pb and Ag. The pulp potential values significantly influence the floatability of practical minerals and single minerals when using NNDDC as the collector. The flotation recovery of galena reaches 85% at about 0.3 V and pH8.8. With the usage of pulp potential control during grinding and flotation, the new pulp electrochemical technology for Mengzi lead-silver-zinc ore flotation was developed. The results show that the grades of Pb and Ag of galena concentrate are 55% and 1 800 g/t, respectively, while the recoveries of Pb and Ag are 86.5% and 65%, respectively, the grade of Zn of marmatite concentrate is 42.5%, and the recovery of Zn is 91.25%.展开更多
Nineteen volcanic and magmatic rock samples were collected from the Jinding lead-zinc deposit and its surrounding areas in Yunnan. The ICP and AES analyses, referred to the previous results, show that the metal minera...Nineteen volcanic and magmatic rock samples were collected from the Jinding lead-zinc deposit and its surrounding areas in Yunnan. The ICP and AES analyses, referred to the previous results, show that the metal minerals and altered rocks in the Jinding lead-zinc deposit display a decreasing trend of ΣREE from the early to late stages of mineralization, and similarities in REE distribution patterns, indicating that the ore fluids are characterized by high LREE enrichment, markedly negative δCe anomaly and slight δEu anomaly. These REE distribution patterns exhibit striking similarities to those of the Pliocene trachyte in the study area, both of which are similar in ΣREE, LREE/HREE ratio, δEu and δCe. The ore fluids besides the basin fluids in the deposit are also closely related to those associated with Pliocene trachyte magmas.展开更多
The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively uniq...The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively unique. On the basis of geological features such as the contents of mineralization elements, the REE concentrations of gangue calcites, the REE concentrations of calcite veins in the NE-trending tectonic zone and the Pb, Sr, C, H and O isotopic compositions of different minerals, this paper presents that the ore-forming materials and ore-forming fluids of the deposit were derived from various types of strata or rocks. This is a very significant conclusion for us to further discuss the mineralization mechanism of the deposit at depth and establish an available genetic model.展开更多
The numerous non-sulfide zinc ore deposits were the historical basis for the development of zinc mining in Iran.They include the Mehdiabad,Irankouh and Angouran world-class deposits,as well as the Zarigan and Haft-har...The numerous non-sulfide zinc ore deposits were the historical basis for the development of zinc mining in Iran.They include the Mehdiabad,Irankouh and Angouran world-class deposits,as well as the Zarigan and Haft-har deposits.These deposits were formed by supergene oxidation of primary sulfide minerals during the complex interplay of tectonic uplift,karst development,changes in the level of the water table,and weathering.Zn(Pb)carbonates,Zn-hydrosilicates and associated hydrated phases directly replace the primary ore bodies or fill cavities along fractures related to uplift tectonics.Direct replacement of primary sulfides is accompanied by distal precipitation of zinc non-sulfide minerals in cavities or internal sediments filling.The mineralogy of the non-sulfide mineralization in all six deposits is generally complex and consists of smithsonite,hydrozincite,and hemimorphite as the main economic minerals,accompanied by iron and manganese oxy-hydroxides and residual clays.Commonly,non-sulfide minerals in these deposits consist of two types of ore:red zinc ore(RZO),rich in Zn,Fe,Pb-(As)and white zinc ore(WZO),typically with very high zinc grades but low concentrations of iron and lead.Typical minerals of the RZO are Fe-oxyhydroxides,goethite,hematite,hemimorphite,smithsonite and/or hydrozincite and cerussite.Common minerals of the WZO are smithsonite or hydrozincite and only minor amounts of Fe-oxyhydroxides and hemimorphite.展开更多
The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of l...The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.展开更多
Iron oxides and lead-zinc deposits in host rocks located in ten drainage basins in the coastal plain of the Red Sea,Egypt,have been subjected to important mining activities.The drainage basins were analyzed to estimat...Iron oxides and lead-zinc deposits in host rocks located in ten drainage basins in the coastal plain of the Red Sea,Egypt,have been subjected to important mining activities.The drainage basins were analyzed to estimate the transportations of these minerals. Fourteen soil samples and fifteen plant samples were collected from sites located in the basin and also in neighboring area and chemically analyzed.In展开更多
Dating of lead-zinc deposits is of critical importance for better understanding of ore genesis, but has long been a big challenge due to the lack of suitable minerals that can be unequivocally linked to the ore genesi...Dating of lead-zinc deposits is of critical importance for better understanding of ore genesis, but has long been a big challenge due to the lack of suitable minerals that can be unequivocally linked to the ore genesis and that can be used for tradition radiometric methods. This kind of deposits have simple mineralogy dominated by galena and sphalerite commonly associated with calcite and other gangue minerals. Both galena and sphalerite have low and high variable Re concentrations and thus Re-Os dating of these minerals have been less promising. In addition, the recovery of Re is extremely low for galena when conventional method was applied, lending additional difficulty in precisely dating galena. In this study, we investigate the recovery of Re using different media for anion exchange separation and reporte a revised preparation method for Re-Os dating of galena and sphalerite. By using the new protocol, two reliable Re-Os isochron ages of galena and sphalerite from the Fule(20.4±3.2 Ma) and Laochang(308±25 Ma) Pb-Zn deposits in Yunnan Province, SW China, are achieved.展开更多
Silicon is one of the most abundant elements in rocks and minerals, so there is a possibility of using silicon isotope to study a series of geological problems on mineral deposits, such as the origin of silicon and ge...Silicon is one of the most abundant elements in rocks and minerals, so there is a possibility of using silicon isotope to study a series of geological problems on mineral deposits, such as the origin of silicon and genesis of deposits. However, no research work has been reported in this field so far. Since the 1950s, silicon isotope variations in nature have been studied,展开更多
基金Project (2007BAC03A11-07) supported by the Ministry of Science and Technology of ChinaProject (KZCX3-SW-437) supported by the Chinese Academy of SciencesProjects (41040014,40571008) supported by the National Natural Science Foundation of China
文摘Nonferrous mining activities are some of the largest sources of heavy metals emissions into the environment and China is one of the largest producers and consumers of lead and zinc in the world.The cumulative productions and emissions of lead and zinc from mining-related activities in China were estimated.Up to 2007,the cumulative productions of lead and zinc in China were estimated to be about 6.69 and 12.59 Mt,respectively;and about 1.62 Mt lead and 3.32 Mt zinc emitted into the ambient environment during the mining,processing and smelting activities,representing 24.39% and 26.36% cumulative production,respectively.Among these three types of mining-related activities,mineral processing contributes the most to the total emission of 50.67% lead and 45.51% zinc.
文摘On the basis of an experimental study and thermodynamic calculation, the mechanisms of paragenesis and separation of silver, lead and zinc in the hydrothermal system have been studied. At acidic to nearly neutral pH, their chloride complexes are stable, and among them the chloride complexes of zinc are most stable. And the sulfide complexes are the dominant species at nearly neutral to alkaline pH, while the sulfide complexes of silver are most stable. With decreasing temperature, , f-{O-2} and increasing pH, the solubilities of silver, lead and zinc will decrease, leading to their deposition and separation. For sulfide complexes, the concentrations of reduced sulfur and pH are two important factors affecting their stabilities. Complexes of different forms and stabilities respond to the variation of conditions to different extents, which gave rise to the paragenesis and separation of silver, lead and zinc in the whole ore-forming process of dissolution, transport and deposition.
基金Projects(41572060,41802089,U1133602)supported by the National Natural Science Foundation of ChinaProject(2017M610614)supported by the Postdoctoral Science Foundation,ChinaProjects(2008,2012)supported by the YM Lab [2011] and Innovation Team of Yunnan Province and KMUST,China
文摘Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal and vertical zoning, from the base(center) of the ore body to the top(outermost), the mineral zones are as follows. I-1: coarse-grained pyrite and a little puce sphalerite;I-2: brown sphalerite, galena, and ferro-dolomite;I-3: galena, sandy beige and pale yellow sphalerite, and calcite;and I-4: fine-grained pyrite, dolomite, and calcite. Among them, sphalerite is the landmark mineral of different zoning. From I-1 to I-3, the color of sphalerite changes from dark to light, its crystalline size changes from coarse to fine, and its structure changes from disseminated to veinlet. This mineral zoning is seen not only on a microscopic scale, but is also clear on a mesoscopic and macroscopic scale. It is caused by the order of the sphalerite and galena precipitation. We studied the metallic minerals and fluid inclusions using a thermodynamic phase diagram method, such as lgfO2–lgfS2, pH–lgfO2, pH–lg[Pb^2+] and pH–lg[HS^-], discussed the constraints on the order of the sphalerite and galena precipitation in the migration and precipitation process of lead and zinc under different pH values, oxygen fugacity, sulfur fugacity, and ionic activity. We also explain the formation mechanism and propose that the main controlling factor of the order of the sphalerite and galena precipitation is sulfur fugacity.
文摘Qinling-type Pb-Zn deposits are located in the Qinling fold belt, occurring in the fine-clastic and carbonate rocks of the Devonian marine facies. They are reformed sedimentary deposits originating from hydrothermal waters, and may be subdivided into 2 subtypes: hydrothermal sedimentary deposits (Changba subtype) and reformed hydrothermal sedimentary deposits (Bijiashan-Qiandongshan subtype). In comparison with some of the famous Palaeozoic Pb-Zn deposits in the world, the Qinling-type Pb-Zn deposits constitute an independent type, which possesses some characteristics of both hydrothermal sedimentary deposits (Meggen type) and reformed hydrothermal deposits (Mississippi Valley type).
基金supported jointly by the National Key R&D Program of China (No. 2016YFC0600408)the National Natural Science Foundation of China (Nos. 41572060, 41773054, U1133602, 41802089)+3 种基金China Postdoctoral Science Foundation (No. 2017M610614)projects of YM Lab (2011)Innovation Team of Yunnan Province and KMUST (2008 and 2012)Yunnan and Kunming University of Science and Technology Postdoctoral Sustentation Fund
文摘A type of carbonate-hosted lead–zinc(Pb–Zn)ore deposits, known as Mississippi Valley Type(MVT)deposits, constitutes an important category of lead–zinc ore deposits. Previous studies proposed a fluid-mixing model to account for metal precipitation mechanism of the MVT ore deposits, in which fluids with metal-chloride complexes happen to mix with fluids with reduced sulfur, producing metal sulfide deposition. In this hypothesis, however, the detailed chemical kinetic process of mixing reactions, and especially the controlling factors on the metal precipitation are not yet clearly stated. In this paper, a series of mixing experiments under ambient temperature and pressure conditions were conducted to simulate the fluid mixing process, by titrating the metal-chloride solutions, doping withor without dolomite, and using NaHS solution. Experimental results, combined with the thermodynamic calculations, suggest that H_2S, rather than HS^-or S^(2-),dominated the reactions of Pb and/or Zn precipitation during the fluid mixing process, in which metal precipitation was influenced by the stability of metal complexes and the pH. Given the constant concentrations of metal and total S in fluids, the pH was a primary factor controlling the Pb and/or Zn metal precipitation. This is because neutralizing or neutralized processes for the ore-forming fluids can cause instabilities of Pb and/or Zn chloride complexes and re-distribution of sulfur species, and thus can facilitate the hydrolysis of Pb and Zn ions and precipitation of sulfides. Therefore, a weakly acidic to neutral fluid environment is most favorable for the precipitation of Pb and Zn sulfides associated with the carbonate-hosted Pb–Zn deposits.
基金granted by the Key Research Program of the Chinese Academy of Sciences (KZCX2-YW-Q04-05)a Special Research Fund of the SKLOG, IGCAS (KCZX20090103)
文摘The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China. Sulfides minerals including sphalerite, galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite, quartz, and barite, making this deposit distinct from most lead-zinc deposits in the SYG. This deposit is controlled by tectonic structures, and most mineralization is located along or near faults zones. Emeishan basalts near the ore district might have contributed to the formation of orebodies. The j34S values of sphalerite, galena, pyrite and barite were estimated to be 3.6‰-13.4‰, 3.7‰-9.0‰, -6.4‰ to 29.2‰ and 32.1‰34.7‰, respectively. In view of the similar δ34S values of barite and sulfates being from the Cambrian strata, the sulfur of barite was likely derived from the Cambrian strata. The homogenization temperatures (T ≈ 134--383℃) of fluid inclusions were not suitable for reducing bacteria, therefore, the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district. Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur, it was not the main mechanism. Considering other aspects, it can be suggested that sulfur of sulfides should have been derived from magmatic activities. The δ34S values of sphalerite were found to be higher than those of coexisting galena. The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions, suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.
基金This research is supported by the National Natural Science Foundation of China (No. 40672061) ; 'National Science Support Plan Program' (2006BAB01A06) ; 'National Basic Research Program of China' (No.2007CB411304 No. 2001 CB409806).
文摘The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin, Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Our preliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockwork rocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluid activities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonates near the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximal facies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloor fluid activity. Fluids in altered stockwork rocks and carbonates have similar H20-NaCI-CO2 system, both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to the unstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. When the fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasing temperature and pressure as well as some involvement of seawater into the fluids result in the unmixing of fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in the unconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The oreforming temperature of unstratified ore bodies is up to high temperature indicating that there is a huge ore-forming potential in its deep.
文摘In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on these typical deposits, the mechanism of leaching-drawing mineralization of Mesozoic geothermal water and the related model are put forward in this paper in the light of the time interval between rock and formation ages as well as hydrogen, oxygen, sulphur and lead isotope geochemical characteristics. The major metallogenic process occurred in volcanic rock layers. The ore-forming fluids are geothermal water coming from meteoric water and circulating at shallow layers. This geothermal water leached and absorbed ore-forming materials from its country rocks during its flowing (such metallogenic elements as silver, lead-zinc and sulphur mainly came from consolidated volcanic rocks), leading to the formation of meso - epithermal silver deposits.
文摘Tuotuo River region(E91°-E93°,N33°-N 35°) is located in southwest Qinghai Province,P.R.China.It lies in one of the most important metallogenic belts in China—Northwest Sanjiang Metallogenic Belt,due to which Tuotuo River region can be of very high metal mineral potential not only in Qinghai Province but also nationwide.In this research,multisource data sets including geological,geochemical,geophysical, and remotely sensed images were integrated for mineral potential analysis with GIS technology.Under the guidance of regional metallogenic features and deposit-forming geologic anomaly theories,evidential layers were obtained from these sets,which
文摘An attempt is made in this paper to describe the following laws governing the distribution of lead-zinc deposits in China: spatial distribution laws, temporal distribution laws, deep level control laws, and deposits association and zoning laws.
文摘The paper discusses the tectonic setting of the fortnation of the Dexing giant copper-gold-lead-zinc deposit and its geological features and demonstrates in detail the polygenetic compound mechanism of its formation.
文摘The electrochemical behavior of Mengzi lead-silver-zinc ore flotation system was studied. Based on the electrochemical characteristics of sulfide mineral flotation system, a stage potential control flotation was developed with the main parameters of pulp potential(φp), pH value and collector dosage. Using N,N’ diphenylamino-dithiolphosphoric acid(NNDDC) as a collector, which has good selectivity for galena flotation at pH 8.8 and pulp potential 330 mV, DDTC is used as secondary collector to improve both the grade and recovery of Pb and Ag. The pulp potential values significantly influence the floatability of practical minerals and single minerals when using NNDDC as the collector. The flotation recovery of galena reaches 85% at about 0.3 V and pH8.8. With the usage of pulp potential control during grinding and flotation, the new pulp electrochemical technology for Mengzi lead-silver-zinc ore flotation was developed. The results show that the grades of Pb and Ag of galena concentrate are 55% and 1 800 g/t, respectively, while the recoveries of Pb and Ag are 86.5% and 65%, respectively, the grade of Zn of marmatite concentrate is 42.5%, and the recovery of Zn is 91.25%.
文摘Nineteen volcanic and magmatic rock samples were collected from the Jinding lead-zinc deposit and its surrounding areas in Yunnan. The ICP and AES analyses, referred to the previous results, show that the metal minerals and altered rocks in the Jinding lead-zinc deposit display a decreasing trend of ΣREE from the early to late stages of mineralization, and similarities in REE distribution patterns, indicating that the ore fluids are characterized by high LREE enrichment, markedly negative δCe anomaly and slight δEu anomaly. These REE distribution patterns exhibit striking similarities to those of the Pliocene trachyte in the study area, both of which are similar in ΣREE, LREE/HREE ratio, δEu and δCe. The ore fluids besides the basin fluids in the deposit are also closely related to those associated with Pliocene trachyte magmas.
文摘The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively unique. On the basis of geological features such as the contents of mineralization elements, the REE concentrations of gangue calcites, the REE concentrations of calcite veins in the NE-trending tectonic zone and the Pb, Sr, C, H and O isotopic compositions of different minerals, this paper presents that the ore-forming materials and ore-forming fluids of the deposit were derived from various types of strata or rocks. This is a very significant conclusion for us to further discuss the mineralization mechanism of the deposit at depth and establish an available genetic model.
文摘The numerous non-sulfide zinc ore deposits were the historical basis for the development of zinc mining in Iran.They include the Mehdiabad,Irankouh and Angouran world-class deposits,as well as the Zarigan and Haft-har deposits.These deposits were formed by supergene oxidation of primary sulfide minerals during the complex interplay of tectonic uplift,karst development,changes in the level of the water table,and weathering.Zn(Pb)carbonates,Zn-hydrosilicates and associated hydrated phases directly replace the primary ore bodies or fill cavities along fractures related to uplift tectonics.Direct replacement of primary sulfides is accompanied by distal precipitation of zinc non-sulfide minerals in cavities or internal sediments filling.The mineralogy of the non-sulfide mineralization in all six deposits is generally complex and consists of smithsonite,hydrozincite,and hemimorphite as the main economic minerals,accompanied by iron and manganese oxy-hydroxides and residual clays.Commonly,non-sulfide minerals in these deposits consist of two types of ore:red zinc ore(RZO),rich in Zn,Fe,Pb-(As)and white zinc ore(WZO),typically with very high zinc grades but low concentrations of iron and lead.Typical minerals of the RZO are Fe-oxyhydroxides,goethite,hematite,hemimorphite,smithsonite and/or hydrozincite and cerussite.Common minerals of the WZO are smithsonite or hydrozincite and only minor amounts of Fe-oxyhydroxides and hemimorphite.
基金granted by the National Natural Science Foundation of China(grants No.41302067,41472067 and 41403043)the Fundamental Research Funds of Chinese Academy of Geological Sciences(grant No.YYWF201614 and 09 program of Institute of Geomechanics)IGCP/SIDA–600,and China Geological Survey(grant No.DD20160053)
文摘The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.
文摘Iron oxides and lead-zinc deposits in host rocks located in ten drainage basins in the coastal plain of the Red Sea,Egypt,have been subjected to important mining activities.The drainage basins were analyzed to estimate the transportations of these minerals. Fourteen soil samples and fifteen plant samples were collected from sites located in the basin and also in neighboring area and chemically analyzed.In
基金supported by the 12th Five-Year Plan Projects of State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences (Nos. SKLODG-ZY125-09, SKLODG-ZY125-02)the National Natural Science Foundation of China (Nos. 41373064, 41102053 and 41163001)the Science and Technology Plan Project of Yunnan Province (No. 2009CD029)
文摘Dating of lead-zinc deposits is of critical importance for better understanding of ore genesis, but has long been a big challenge due to the lack of suitable minerals that can be unequivocally linked to the ore genesis and that can be used for tradition radiometric methods. This kind of deposits have simple mineralogy dominated by galena and sphalerite commonly associated with calcite and other gangue minerals. Both galena and sphalerite have low and high variable Re concentrations and thus Re-Os dating of these minerals have been less promising. In addition, the recovery of Re is extremely low for galena when conventional method was applied, lending additional difficulty in precisely dating galena. In this study, we investigate the recovery of Re using different media for anion exchange separation and reporte a revised preparation method for Re-Os dating of galena and sphalerite. By using the new protocol, two reliable Re-Os isochron ages of galena and sphalerite from the Fule(20.4±3.2 Ma) and Laochang(308±25 Ma) Pb-Zn deposits in Yunnan Province, SW China, are achieved.
文摘Silicon is one of the most abundant elements in rocks and minerals, so there is a possibility of using silicon isotope to study a series of geological problems on mineral deposits, such as the origin of silicon and genesis of deposits. However, no research work has been reported in this field so far. Since the 1950s, silicon isotope variations in nature have been studied,