Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated wi...Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.展开更多
The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are consi...The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are considered aspromising candidates due to their exceptional photovoltaic properties,good stability and low cost.The cooling rate of hotcarriers is a key parameter influencing the performance of hot-carrier solar cells.In this work,we successfully detected hotcarrier dynamics in operando LHP devices using the two-pulse photovoltage correlation technique.To enhance the signalto-noise ratio,we applied the delay-time modulation method instead of the traditional power modulation.This advancementallowed us to detect the intraband hot carrier cooling time for the organic LHP CH_(3)NH_(3)PbBr_(3),which is as short as 0.21 ps.In comparison,the inorganic Cs-based LHP CsPbBr_(3)exhibited a longer cooling time of around 0.59 ps due to differentphonon contributions.These results provide us new insights into the optimal design of hot-carrier solar cells and highlightthe potential of LHP materials in advancing solar cell technology.展开更多
The terrestrial abundance anomalies of helium and xenon suggest the presence of deep-Earth reservoirs of these elements,which has led to great interest in searching for materials that can host these usually unreactive...The terrestrial abundance anomalies of helium and xenon suggest the presence of deep-Earth reservoirs of these elements,which has led to great interest in searching for materials that can host these usually unreactive elements.Here,using an advanced crystal structure search approach in conjunction with first-principles calculations,we show that several Xe/He-bearing iron halides are thermodynamically stable in a broad region of P–T phase space below 60 GPa.Our results present a compelling case for sequestration of He and Xe in the early Earth and may suggest their much wider distribution in the present Earth than previously believed.These findings offer insights into key material-based and physical mechanisms for elucidating major geological phenomena.展开更多
Lead-based halide perovskites have emerged as excellent semiconductors for a broad range of optoelectronic applications, such as photovoltaics, lighting, lasing and photon detection. However, toxicity of lead and poor...Lead-based halide perovskites have emerged as excellent semiconductors for a broad range of optoelectronic applications, such as photovoltaics, lighting, lasing and photon detection. However, toxicity of lead and poor stability still represent significant challenges. Fortunately, halide double perovskite materials with formula of A_2M(I)M(III)X_6 or A_2M(IV)X_6 could be potentially regarded as stable and green alternatives for optoelectronic applications, where two divalent lead ions are substituted by combining one monovalent and one trivalent ions, or one tetravalent ion. Here, the article provides an up-to-date review on the developments of halide double perovskite materials and their related optoelectronic applications including photodetectors, X-ray detectors, photocatalyst, light-emitting diodes and solar cells. The synthesized halide double perovskite materials exhibit exceptional stability, and a few possess superior optoelectronic properties. However, the number of synthesized halide double perovskites is limited, and more limited materials have been developed for optoelectronic applications to date. In addition, the band structures and carrier transport properties of the materials are still not desired, and the films still manifest low quality for photovoltaic applications. Therefore, we propose that continuing e orts are needed to develop more halide double perovskites, modulate the properties and grow high-quality films, with the aim of opening the wild practical applications.展开更多
With only a few deep-level defect states having a high formation energy and dominance of shallow carrier non-trapping defects,the defect-tolerant electronic and optical properties of lead halide perovskites have made ...With only a few deep-level defect states having a high formation energy and dominance of shallow carrier non-trapping defects,the defect-tolerant electronic and optical properties of lead halide perovskites have made them appealing materials for high-efficiency,low-cost,solar cells and light-emitting devices.As such,recent observations of apparently deep-level and highly luminescent states in low-dimensional perovskites have attracted enormous attention as well as intensive debates.The observed green emission in 2D CsPb2Br5 and 0 D Cs4PbBr6 poses an enigma over whether it is originated from intrinsic point defects or simply from highly luminescent CsPbBr3 nanocrystals embedded in the otherwise transparent wide band gap semiconductors.The nature of deep-level edge emission in 2D Ruddlesden–Popper perovskites is also not well understood.In this mini review,the experimental evidences that support the opposing interpretations are analyzed,and challenges and root causes forthe controversy are discussed.Shortcomings in the current density functional theory approaches to modeling of properties and intrinsic point defects in lead halide perovskites are also noted.Selected experimental approaches are suggested to better correlate property with structure of a material and help resolve the controversies.Understanding and identification of the origin of luminescent centers will help design and engineer perovskites for wide device applications.展开更多
Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform f...Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform for fundamental science research and applications.Patterned structures based on lead halide perovskites have much more novel properties compared with their more commonly seen bulk-,micro-,and nano-crystals,such as improvement in antireflection,light-scattering effects,and light absorption,as a result of their adjustability of spatial distributions.However,there are many challenges yet to be resolved in this field,such as insufficient patterned resolution,imperfect crystal quality,complicated preparation process,and so on.To pave the way to solve these problems,we provide a systematic presentation of current methods for fabricating lead halide perovskite patterned structures,including thermal imprint,use of etching films,two-step vapor-phase growth,template-confined solution growth,and seed-assisted growth.Furthermore,the advantages and disadvantages of these methods are elaborated in detail.In addition,thanks to the extraordinary properties of lead halide perovskite patterned structures,a variety of potential applications in optics and optoelectronics of these structures are described.Lastly,we put forward existing challenges and prospects in this exciting field.展开更多
The distinguished electronic and optical properties of lead halide perovskites(LHPs)make them good candidates for active layer in optoelectronic devices.Integrating LHPs and two-dimensional(2 D)transition metal dichal...The distinguished electronic and optical properties of lead halide perovskites(LHPs)make them good candidates for active layer in optoelectronic devices.Integrating LHPs and two-dimensional(2 D)transition metal dichalcogenides(TMDs)provides opportunities for achieving increased performance in heterostructured LHPs/TMDs based optoelectronic devices.The electronic structures of LHPs/TMDs heterostructures,such as the band offsets and interfacial interaction,are of fundamental and technological interest.Here CsPbBr3 and MoSe2 are taken as prototypes of LHPs and 2 D TMDs to investigate the band alignment and interfacial coupling between them.Our GGA-PBE and HSE06 calculations reveal an intrinsic type-II band alignment between CsPbBr3 and MoSe2.This type-II band alignment suggests that the performance of CsPbBr3-based photodetectors can be improved by incorporating MoSe2 monolayer.Furthermore,the absence of deep defect states at CsPbBr3/MoSe2 interfaces is also beneficial to the better performance of photodetectors based on CsPbBr3/MoSe2 heterostructure.This work not only offers insights into the improved performance of photodetectors based on LHPs/TMDs heterostructures but it also provides guidelines for designing high-efficiency optoelectronic devices based on LHPs/TMDs heterostructures.展开更多
Methyl halides are crucial trace greenhouse gases in the atmosphere,playing a significant role in global climate change and the atmospheric environment.This study investigated the photochemical production of methyl ha...Methyl halides are crucial trace greenhouse gases in the atmosphere,playing a significant role in global climate change and the atmospheric environment.This study investigated the photochemical production of methyl halides in an artificial seawater system using guaiacol as a precursor through laboratory simulation experiments.The influences of various environmental factors,including illumination time,radiation wavebands,illumination intensity,concentrations of guaiacol and halide ions(X^(-)),Fe^(3+),salinity,dissolved oxygen(DO),and pH value on the photochemical production of methyl halides were examined.We demonstrated that increased illumination intensity and duration promote the photochemical production of methyl halides,with a notable enhancement under UV-B radiation.Guaiacol and halide ions were identified as key precursors,and their high concentrations facilitated the formation of methyl halides.Additionally,different types of halide ions exhibited a competitive relationship in producing methyl halides.The study found that an increase in pH inhibited the photochemical formation of CH_(3)I due to the reaction between OH^(-)and·CH_(3).Dissolved oxygen was found to inhibit the photochemical formation of CH3I while promoting the formation of CH_(3)Cl.Conversely,an appropriate concentration of Fe^(3+)enhanced the photochemical production of methyl halides.Field observations indicated a high photochemical production of methyl halides in the natural waters near Qingdao’s coastal area,likely due to the high concentration of dissolved organic matter(DOM),which supports photochemical reactions.Furthermore,the photochemical production of methyl halides in natural seawater was significantly higher than in dark conditions,underscoring the importance of illumination in promoting these photochemical processes in seawater.展开更多
Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have ...Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs.展开更多
Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped exc...Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped excitons(STEs)emission mechanisms of Cu(I)halides are well understood,the STEs in Ag(I)halides remain less thoroughly explored.This study explores the STE emission efficiency within the A_(2)AgX_(3)(A=Rb,Cs;X=Cl,Br,I)system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams.We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers.Moreover,we investigate the impact of structural compactness on emission efficiency and find that the excessive electron–phonon coupling in this system can be reduced by increasing the structural compactness.The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs_(2)AgX_(3) and Rb_(2)AgX_(3) systems.These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials.The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.展开更多
The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) io...The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) ions in OIHMHs is primarily confined to the low energy region,resulting in yellow or red emissions.To date,there are few reports about green emission of Sb^(3+)-doped OIHMHs.Here,we present a novel approach for regulating the luminescence of Sb^(3+) ions in 0D C_(10)H_(2)_(2)N_(6)InCl_(7)·H_(2)O via hydrogen bond network,in which water molecules act as agents for hydrogen bonding.Sb^(3+)-doped C_(10)H_(2)2N_(6)InCl_(7)·H_(2)O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield(PLQY)of 80%.It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons(STEs).Upon removal of water molecules with heat,C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7) generates yellow emis-sion,attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.Once water molecules are adsorbed by C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7),it can subsequently emit green light.This water-induced reversible emission switching is successfully used for optical security and information encryption.Our findings expand the under-standing of how the local coordination structure influences the photophysical mechanism in Sb^(3+)-doped metal halides and provide a novel method to control the STEs emission.展开更多
Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium(MA) lead-iodide perovskite thin films. ...Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium(MA) lead-iodide perovskite thin films. It is found that the dynamics of conductivity after photoexcitation reveals significant correlation on the microscopy crystalline features of the samples. Our results show that mixed-cation and lead mixed-halide affect the charge carrier dynamics of the lead-iodide perovskites. In the(5-AVA)_(0.05)(MA)_(0.95) PbI_(2.95) Cl_(0.05)/spiro thin film, we observe a much weaker saturation trend of the initial photoconductivity with high excitation fluence, which is attributed to the combined effect of sequential charge carrier generation, transfer, cooling and polaron formation.展开更多
The outcomes of computational study of electronic, magnetic and optical spectra for A2BX6 (A = Rb;B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vande...The outcomes of computational study of electronic, magnetic and optical spectra for A2BX6 (A = Rb;B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ultra Soft Pseudo Potential (US-PP) process. The Rb2PbBr6 and Rb2PbCl6 are found to be a (Г-Г) semiconductors with energy gaps of 0.275 and 1.142 eV, respectively making them promising photovoltaic materials. The metallic behavior of the materials for Rb2BX6 (B = Tc, W, Ir, Ta, Mn, Sb, Mo) has been confirmed showing the attendance of conducting lineaments. The dielectric function is found to be large close to the ultraviolet districts (3.10 - 4.13 eV). The extinction coefficient of the Rb2BX6 has the ability to be used for implements. The band structures and density of states ensure the magnetic semiconductors’ nature of the Rb2Mn (Cl, Br)6 perovskites. The total calculated magnetic moment of Rb2MnCl6 and Rb2MnB6 is 3.00μβ. Advanced spintronic technology requires room-temperature ferromagnetism. The present work confirms that, bromine and chlorine-founded double perovskites are extremely attractive for photovoltaic and optoelectronic devices.展开更多
Two-dimensional 4,4-bipyridyllead halides, PbI_2(4,4′-bpy)(1) and PbBr_2(4,4′-bpy)(2), were synthesized. The structures were determined by means of X-ray single crystal diffraction. The structure shows a distorted o...Two-dimensional 4,4-bipyridyllead halides, PbI_2(4,4′-bpy)(1) and PbBr_2(4,4′-bpy)(2), were synthesized. The structures were determined by means of X-ray single crystal diffraction. The structure shows a distorted octahedral configuration with six-coordinated central lead atoms. In crystals 1 and 2, the molecules are packed in a two-dimensional network structure through bridging halide atoms and 4,4′-bipyridine ligands between the adjacent lead atoms.展开更多
Palladium-catalyzed carbonylation is an efficient approach to prepare carbonyl-containing compounds with high atomic economy in synthetic organic chemistry.However,in comparison with aryl halides,carbonylation of alky...Palladium-catalyzed carbonylation is an efficient approach to prepare carbonyl-containing compounds with high atomic economy in synthetic organic chemistry.However,in comparison with aryl halides,carbonylation of alkyl halides is relatively challenging due to the decreased stability of the palladium intermediates.Carbonylation of activated alkyl halides is even more difficult,as nucleophilic substitution reactions with nucleophiles occur more easily with them.In this article,we summarize and discuss recent achievements in palladium-catalyzed carbonylative reactions of activated alkyl halides.The transformations proceed through radical intermediates which are generated in various manners.Under a relatively high pressure of carbon monoxide,the corresponding aliphatic carboxylic acid derivates were effectively prepared with various nucleophiles as the reaction partners.Besides alcohols,amines and organoboron reagents,four-component reactions in combination with alkenes or alkynes were also developed.Case-by-case reaction mechanisms are discussed as well and a personal outlook has also been provided.展开更多
We report a transition metal such as manganese doped methylammonium lead halide perovskite(MA(Pb:Mn)I_(3)) solar cell with an power conversion efficiency(PCE) over 20%. The rational design and fabrication of MA(Pb:Mn)...We report a transition metal such as manganese doped methylammonium lead halide perovskite(MA(Pb:Mn)I_(3)) solar cell with an power conversion efficiency(PCE) over 20%. The rational design and fabrication of MA(Pb:Mn)I3 lead to the enhancements of all the photovoltaic parameters. To incorporate Mn can effectively eliminate the trap-assist and bi-molecular recombination. The photo-absorption ability at shorter wavelengths(i.e., less than 500 nm) and charge carrier lifetime can be elaborated. More importantly, the existence of the Mn^(2+)-I~--Mn^(3+)motif contributes for the double exchange effect, giving rise to the charge/spin transport. By a combination of linearly and circularly polarized photo-excitations, we have explicitly determined the role of intrinsic spin–orbit coupling(SOC) in MA(Pb:Mn)I_(3). More dark states are expected to be available for the photocurrent generation. This study may pave the way for deep understandings of transition metals doped hybrid perovskites for highly efficient solar cell applications.展开更多
Metal halide perovskites have aroused tremendous interest in optoelectronics due to their attractive properties,encouraging the development of high-performance devices for emerging application domains such as wearable...Metal halide perovskites have aroused tremendous interest in optoelectronics due to their attractive properties,encouraging the development of high-performance devices for emerging application domains such as wearable electronics and the Internet of Things.Specifically,the development of high-performance perovskite-based photodetectors(PDs)as an ultimate substitute for conventional PDs made of inorganic semiconductors such as silicon,InGaAs,GaN,and germanium-based commercial PDs,attracts great attention by virtue of its solution processing,film deposition technique,and tunable optical properties.Importantly,perovskite PDs can also deliver high performance without an external power source;so-called self-powered perovskite photodetectors(SPPDs)have found eminent application in next-generation nanodevices operating independently,wirelessly,and remotely.Earlier research reports indicate that perovskite-based SPPDs have excellent photoresponsive behavior and wideband spectral response ranges.Despite the high-performance perovskite PDs,their commercialization is hindered by long-term material instability under ambient conditions.This review aims to provide a comprehensive compilation of the research results on self-powered,lead–halide perovskite PDs.In addition,a brief introduction is given to flexible SPPDs.Finally,we put forward some perspectives on the further development of perovskite-based self-powered PDs.We believe that this review can provide state-of-the-art current research on SPPDs and serve as a guide to improvising a path for enhancing the performance to meet the versatility of practical device applications.展开更多
Since metal halide perovskites were utilized as visible-light-harvesting materials for solar cells in 2009,power conversion efficiencies(PCEs)for metal halide perovskite solar cells(PSCs)have already reached to a cert...Since metal halide perovskites were utilized as visible-light-harvesting materials for solar cells in 2009,power conversion efficiencies(PCEs)for metal halide perovskite solar cells(PSCs)have already reached to a certified value of 25.7%,making PSCs to be a promising next-generation photovoltaic technology[1−5].Compositional engineering of perovskite materials is an effective approach for achieving highly efficient and stable PSCs[6−8].展开更多
Although lead-based perovskite solar cells have achieved more than 25%power conversion efficiency,the toxicity of lead and instability are still urgent problems faced in industrial application.Lead-free halide double ...Although lead-based perovskite solar cells have achieved more than 25%power conversion efficiency,the toxicity of lead and instability are still urgent problems faced in industrial application.Lead-free halide double perovskite(DP)materials are promising candidates to resolve these issues.Based on the density functional theory,we explore the geometric stability,thermodynamic stability,mechanical stability,electronic structures,and optical properties of theCs_(2)B 0BiI_(6)(B 0=Li,Na and K)DP materials.By analyzing the tolerance factor and octahedral factor,we find the geometric stabilities ofCs_(2)NaBiI_(6) andCs_(2)KBiI_(6) DPs are better thanCs_(2)LiBiI_(6).By calculating the total energy,formation energy and decomposition energy,we propose that the most favorable structure ofCs_(2)B 0BiI_(6) is the orthorhombic phase,andCs_(2)LiBiI_(6) is less stable relative to the other two counterparts from an energetic viewpoint.Mechanical stability evaluations reveal that the orthorhombicCs_(2)LiBiI_(6) material is less stable relative to the isostructuralCs_(2)NaBiI_(6) andCs_(2)KBiI_(6) DPs.The mechanical property calculations indicate that theCs_(2)B 0BiI_(6) DPs possess good ductility,which can be used as flexible materials.Electronic structures and optical property calculations show that the orthorhombicCs_(2)B 0BiI_(6) DPs have suitable band gap values,weaker exciton binding energies,and excellent optical absorption performance in the visible-light range.Based on the above comprehensive assessments,we can conclude that the orthorhombic Cs_(2)NaBiI_(6) and Cs_(2)KBiI_(6) DPs with good stability are promising candidates for solar cell applications.展开更多
Replacing lead iodide(PbI_(2))with suitable non-halides lead source has been found to be an effective method to control crystallization and fabricate high-performance perovskite solar cells(PSCs).However,the solubilit...Replacing lead iodide(PbI_(2))with suitable non-halides lead source has been found to be an effective method to control crystallization and fabricate high-performance perovskite solar cells(PSCs).However,the solubility of non-halide lead sources is highly limited by traditional solvents due to the chemical interaction limitation.Here,we report a series of non-halide lead sources(e.g.,lead acetate(PbAc_(2)),lead sulfate(PbSO_(4)),lead carbonate(PbCO_(3)),lead nitrate(Pb(NO_(3))_(2)),lead formate(Pb(HCOO)_(2))and lead oxalate(PbC_(2)O_(4)))can be well dissolved in an ionic liquid solvent methylammonium acetate(MAAc).We found that the universal strong coordination of C=O with lead ion(Pb^(2+))and the formation of hydrogen bonds were observed in perovskite precursor solution.This allows the dissolution of non-halide lead salts and is able to produce perovskite film with smooth,compact,and full coverage crystal grain.The power conversion efficiency(PCE)of 14.48%,19.21%,and 20.13%in PSCs based on PbSO_(4),PbAc_(2),and PbCO_(3) was achieved,respectively,in the absence of any additives and passivation agents.This study demonstrates the universality of ionic liquid for the preparation of PSCs based on nonhalides lead sources.展开更多
基金supported by the National Natural Science Foundation of China(22278066,21776039)the National Key R&D Program of China(2023YFB4103001)The Fundamental Research Funds for the Central Universities(DUT2021TB03).
文摘Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.
基金supported by the National Key R&D Program of China(Grant No.2021YFA1400500)New Cornerstone Science Foundation through the New Cornerstone Investigator Program,and the XPLORER Prize.
文摘The next-generation hot-carrier solar cells,which can overcome the Shockley-Queisser limit by harvesting excessenergy from hot carriers,are receiving increasing attention.Lead halide perovskite(LHP)materials are considered aspromising candidates due to their exceptional photovoltaic properties,good stability and low cost.The cooling rate of hotcarriers is a key parameter influencing the performance of hot-carrier solar cells.In this work,we successfully detected hotcarrier dynamics in operando LHP devices using the two-pulse photovoltage correlation technique.To enhance the signalto-noise ratio,we applied the delay-time modulation method instead of the traditional power modulation.This advancementallowed us to detect the intraband hot carrier cooling time for the organic LHP CH_(3)NH_(3)PbBr_(3),which is as short as 0.21 ps.In comparison,the inorganic Cs-based LHP CsPbBr_(3)exhibited a longer cooling time of around 0.59 ps due to differentphonon contributions.These results provide us new insights into the optimal design of hot-carrier solar cells and highlightthe potential of LHP materials in advancing solar cell technology.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.12204280 and 12147135)the Postdoctoral Science Foundation of China(Grant No.2021M691980)+3 种基金Natural Science Foundation of Shandong Province(Grant No.ZR202103010004)the Jilin Province Science and Technology Development Program(Grant No.YDZJ202102CXJD016)the Program for Jilin University Science and Technology Innovative Research Team(2021TD-05)the Program for Jilin University Computational Interdisciplinary Innovative Platform。
文摘The terrestrial abundance anomalies of helium and xenon suggest the presence of deep-Earth reservoirs of these elements,which has led to great interest in searching for materials that can host these usually unreactive elements.Here,using an advanced crystal structure search approach in conjunction with first-principles calculations,we show that several Xe/He-bearing iron halides are thermodynamically stable in a broad region of P–T phase space below 60 GPa.Our results present a compelling case for sequestration of He and Xe in the early Earth and may suggest their much wider distribution in the present Earth than previously believed.These findings offer insights into key material-based and physical mechanisms for elucidating major geological phenomena.
基金supported by the Ministry of Education of China (IRT1148)the National Natural Science Foundation of China (U1732126, 11804166, 51602161, 51372119)+3 种基金the National Synergetic Innovation Center for Advanced Materials (SICAM)the China Postdoctoral Science Foundation (2018M630587)the Priority Academic Program Development of Jiangsu Higher Education Institutions (YX03001)the Natural Science Foundation of NJUPT (NY217091)
文摘Lead-based halide perovskites have emerged as excellent semiconductors for a broad range of optoelectronic applications, such as photovoltaics, lighting, lasing and photon detection. However, toxicity of lead and poor stability still represent significant challenges. Fortunately, halide double perovskite materials with formula of A_2M(I)M(III)X_6 or A_2M(IV)X_6 could be potentially regarded as stable and green alternatives for optoelectronic applications, where two divalent lead ions are substituted by combining one monovalent and one trivalent ions, or one tetravalent ion. Here, the article provides an up-to-date review on the developments of halide double perovskite materials and their related optoelectronic applications including photodetectors, X-ray detectors, photocatalyst, light-emitting diodes and solar cells. The synthesized halide double perovskite materials exhibit exceptional stability, and a few possess superior optoelectronic properties. However, the number of synthesized halide double perovskites is limited, and more limited materials have been developed for optoelectronic applications to date. In addition, the band structures and carrier transport properties of the materials are still not desired, and the films still manifest low quality for photovoltaic applications. Therefore, we propose that continuing e orts are needed to develop more halide double perovskites, modulate the properties and grow high-quality films, with the aim of opening the wild practical applications.
基金support from the Robert A.Welch Foundation(E-1728)National Science Foundation(EEC-1530753)supported by the State of Texas through the Texas Center for superconductivity at the University of Houston
文摘With only a few deep-level defect states having a high formation energy and dominance of shallow carrier non-trapping defects,the defect-tolerant electronic and optical properties of lead halide perovskites have made them appealing materials for high-efficiency,low-cost,solar cells and light-emitting devices.As such,recent observations of apparently deep-level and highly luminescent states in low-dimensional perovskites have attracted enormous attention as well as intensive debates.The observed green emission in 2D CsPb2Br5 and 0 D Cs4PbBr6 poses an enigma over whether it is originated from intrinsic point defects or simply from highly luminescent CsPbBr3 nanocrystals embedded in the otherwise transparent wide band gap semiconductors.The nature of deep-level edge emission in 2D Ruddlesden–Popper perovskites is also not well understood.In this mini review,the experimental evidences that support the opposing interpretations are analyzed,and challenges and root causes forthe controversy are discussed.Shortcomings in the current density functional theory approaches to modeling of properties and intrinsic point defects in lead halide perovskites are also noted.Selected experimental approaches are suggested to better correlate property with structure of a material and help resolve the controversies.Understanding and identification of the origin of luminescent centers will help design and engineer perovskites for wide device applications.
基金The authors acknowledge support from the National Natural Science Foundation of China(Grant Nos.51902061 and 62090031).
文摘Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform for fundamental science research and applications.Patterned structures based on lead halide perovskites have much more novel properties compared with their more commonly seen bulk-,micro-,and nano-crystals,such as improvement in antireflection,light-scattering effects,and light absorption,as a result of their adjustability of spatial distributions.However,there are many challenges yet to be resolved in this field,such as insufficient patterned resolution,imperfect crystal quality,complicated preparation process,and so on.To pave the way to solve these problems,we provide a systematic presentation of current methods for fabricating lead halide perovskite patterned structures,including thermal imprint,use of etching films,two-step vapor-phase growth,template-confined solution growth,and seed-assisted growth.Furthermore,the advantages and disadvantages of these methods are elaborated in detail.In addition,thanks to the extraordinary properties of lead halide perovskite patterned structures,a variety of potential applications in optics and optoelectronics of these structures are described.Lastly,we put forward existing challenges and prospects in this exciting field.
基金financially supported by the National Natural Science Foundation of China(Grants No.11804058,11674310,61622406).
文摘The distinguished electronic and optical properties of lead halide perovskites(LHPs)make them good candidates for active layer in optoelectronic devices.Integrating LHPs and two-dimensional(2 D)transition metal dichalcogenides(TMDs)provides opportunities for achieving increased performance in heterostructured LHPs/TMDs based optoelectronic devices.The electronic structures of LHPs/TMDs heterostructures,such as the band offsets and interfacial interaction,are of fundamental and technological interest.Here CsPbBr3 and MoSe2 are taken as prototypes of LHPs and 2 D TMDs to investigate the band alignment and interfacial coupling between them.Our GGA-PBE and HSE06 calculations reveal an intrinsic type-II band alignment between CsPbBr3 and MoSe2.This type-II band alignment suggests that the performance of CsPbBr3-based photodetectors can be improved by incorporating MoSe2 monolayer.Furthermore,the absence of deep defect states at CsPbBr3/MoSe2 interfaces is also beneficial to the better performance of photodetectors based on CsPbBr3/MoSe2 heterostructure.This work not only offers insights into the improved performance of photodetectors based on LHPs/TMDs heterostructures but it also provides guidelines for designing high-efficiency optoelectronic devices based on LHPs/TMDs heterostructures.
基金funded by the Natural Science Foundation of Shandong Province,China(No.ZR2021MD034)the National Natural Science Foundation of China(No.42276039).
文摘Methyl halides are crucial trace greenhouse gases in the atmosphere,playing a significant role in global climate change and the atmospheric environment.This study investigated the photochemical production of methyl halides in an artificial seawater system using guaiacol as a precursor through laboratory simulation experiments.The influences of various environmental factors,including illumination time,radiation wavebands,illumination intensity,concentrations of guaiacol and halide ions(X^(-)),Fe^(3+),salinity,dissolved oxygen(DO),and pH value on the photochemical production of methyl halides were examined.We demonstrated that increased illumination intensity and duration promote the photochemical production of methyl halides,with a notable enhancement under UV-B radiation.Guaiacol and halide ions were identified as key precursors,and their high concentrations facilitated the formation of methyl halides.Additionally,different types of halide ions exhibited a competitive relationship in producing methyl halides.The study found that an increase in pH inhibited the photochemical formation of CH_(3)I due to the reaction between OH^(-)and·CH_(3).Dissolved oxygen was found to inhibit the photochemical formation of CH3I while promoting the formation of CH_(3)Cl.Conversely,an appropriate concentration of Fe^(3+)enhanced the photochemical production of methyl halides.Field observations indicated a high photochemical production of methyl halides in the natural waters near Qingdao’s coastal area,likely due to the high concentration of dissolved organic matter(DOM),which supports photochemical reactions.Furthermore,the photochemical production of methyl halides in natural seawater was significantly higher than in dark conditions,underscoring the importance of illumination in promoting these photochemical processes in seawater.
基金financially supported by the National Natural Science Foundation of China(Grant No.51972130)the Startup Fund of Huazhong University of Science and Technologythe Director Fund of Wuhan National Laboratory for Optoelectronics
文摘Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62125402 and 62321166653).
文摘Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped excitons(STEs)emission mechanisms of Cu(I)halides are well understood,the STEs in Ag(I)halides remain less thoroughly explored.This study explores the STE emission efficiency within the A_(2)AgX_(3)(A=Rb,Cs;X=Cl,Br,I)system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams.We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers.Moreover,we investigate the impact of structural compactness on emission efficiency and find that the excessive electron–phonon coupling in this system can be reduced by increasing the structural compactness.The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs_(2)AgX_(3) and Rb_(2)AgX_(3) systems.These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials.The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.
基金National Natural Science Foundation of China(11974063)Graduate research innovation project,School of Optoelectronic Engineering,Chongqing University(GDYKC2023002)+1 种基金Fundamental Research Funds for the Central Universities(2022CDJQY-010)The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project no.(IFKSUOR3-073-9).
文摘The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) ions in OIHMHs is primarily confined to the low energy region,resulting in yellow or red emissions.To date,there are few reports about green emission of Sb^(3+)-doped OIHMHs.Here,we present a novel approach for regulating the luminescence of Sb^(3+) ions in 0D C_(10)H_(2)_(2)N_(6)InCl_(7)·H_(2)O via hydrogen bond network,in which water molecules act as agents for hydrogen bonding.Sb^(3+)-doped C_(10)H_(2)2N_(6)InCl_(7)·H_(2)O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield(PLQY)of 80%.It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons(STEs).Upon removal of water molecules with heat,C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7) generates yellow emis-sion,attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.Once water molecules are adsorbed by C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7),it can subsequently emit green light.This water-induced reversible emission switching is successfully used for optical security and information encryption.Our findings expand the under-standing of how the local coordination structure influences the photophysical mechanism in Sb^(3+)-doped metal halides and provide a novel method to control the STEs emission.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11604202,11674213,61735010 and 51603119the Young Eastern Scholar under Grant Nos QD2015020 and QD2016027+3 种基金the Shanghai Rising-Star Program under Grant No18QA1401700the ‘Chen Guang’ Project under Grant Nos 16CG45 and 16CG46the Shanghai Municipal Education Commissionthe Shanghai Education Development Foundation
文摘Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium(MA) lead-iodide perovskite thin films. It is found that the dynamics of conductivity after photoexcitation reveals significant correlation on the microscopy crystalline features of the samples. Our results show that mixed-cation and lead mixed-halide affect the charge carrier dynamics of the lead-iodide perovskites. In the(5-AVA)_(0.05)(MA)_(0.95) PbI_(2.95) Cl_(0.05)/spiro thin film, we observe a much weaker saturation trend of the initial photoconductivity with high excitation fluence, which is attributed to the combined effect of sequential charge carrier generation, transfer, cooling and polaron formation.
文摘The outcomes of computational study of electronic, magnetic and optical spectra for A2BX6 (A = Rb;B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ultra Soft Pseudo Potential (US-PP) process. The Rb2PbBr6 and Rb2PbCl6 are found to be a (Г-Г) semiconductors with energy gaps of 0.275 and 1.142 eV, respectively making them promising photovoltaic materials. The metallic behavior of the materials for Rb2BX6 (B = Tc, W, Ir, Ta, Mn, Sb, Mo) has been confirmed showing the attendance of conducting lineaments. The dielectric function is found to be large close to the ultraviolet districts (3.10 - 4.13 eV). The extinction coefficient of the Rb2BX6 has the ability to be used for implements. The band structures and density of states ensure the magnetic semiconductors’ nature of the Rb2Mn (Cl, Br)6 perovskites. The total calculated magnetic moment of Rb2MnCl6 and Rb2MnB6 is 3.00μβ. Advanced spintronic technology requires room-temperature ferromagnetism. The present work confirms that, bromine and chlorine-founded double perovskites are extremely attractive for photovoltaic and optoelectronic devices.
基金Supported by the Natural Science Foundation of Shandong Province(No.L2 0 0 3B0 1) and the State Key L aboratory ofCrystal MaterialsShandong University
文摘Two-dimensional 4,4-bipyridyllead halides, PbI_2(4,4′-bpy)(1) and PbBr_2(4,4′-bpy)(2), were synthesized. The structures were determined by means of X-ray single crystal diffraction. The structure shows a distorted octahedral configuration with six-coordinated central lead atoms. In crystals 1 and 2, the molecules are packed in a two-dimensional network structure through bridging halide atoms and 4,4′-bipyridine ligands between the adjacent lead atoms.
基金financial support from DICP and K.C.Wong Education Foundation(GJTD-2020-08).
文摘Palladium-catalyzed carbonylation is an efficient approach to prepare carbonyl-containing compounds with high atomic economy in synthetic organic chemistry.However,in comparison with aryl halides,carbonylation of alkyl halides is relatively challenging due to the decreased stability of the palladium intermediates.Carbonylation of activated alkyl halides is even more difficult,as nucleophilic substitution reactions with nucleophiles occur more easily with them.In this article,we summarize and discuss recent achievements in palladium-catalyzed carbonylative reactions of activated alkyl halides.The transformations proceed through radical intermediates which are generated in various manners.Under a relatively high pressure of carbon monoxide,the corresponding aliphatic carboxylic acid derivates were effectively prepared with various nucleophiles as the reaction partners.Besides alcohols,amines and organoboron reagents,four-component reactions in combination with alkenes or alkynes were also developed.Case-by-case reaction mechanisms are discussed as well and a personal outlook has also been provided.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61634001, 11942413, 61974010, and 61904011)the Intergovernmental Cooperation Project, National Key Research and Development Program, Ministry of Science and Technology, China (Grant No. 2019YFE0108400)。
文摘We report a transition metal such as manganese doped methylammonium lead halide perovskite(MA(Pb:Mn)I_(3)) solar cell with an power conversion efficiency(PCE) over 20%. The rational design and fabrication of MA(Pb:Mn)I3 lead to the enhancements of all the photovoltaic parameters. To incorporate Mn can effectively eliminate the trap-assist and bi-molecular recombination. The photo-absorption ability at shorter wavelengths(i.e., less than 500 nm) and charge carrier lifetime can be elaborated. More importantly, the existence of the Mn^(2+)-I~--Mn^(3+)motif contributes for the double exchange effect, giving rise to the charge/spin transport. By a combination of linearly and circularly polarized photo-excitations, we have explicitly determined the role of intrinsic spin–orbit coupling(SOC) in MA(Pb:Mn)I_(3). More dark states are expected to be available for the photocurrent generation. This study may pave the way for deep understandings of transition metals doped hybrid perovskites for highly efficient solar cell applications.
基金National Key Research and Development Program of China(2018YFB2200500)National Natural Science Foundation of China(61974170,61934007)+1 种基金Beijing Municipal Science and Technology Commission(Z191100004819011)International Collaboration Project of Ministry of Science and Technology(DL20200001030).
文摘Metal halide perovskites have aroused tremendous interest in optoelectronics due to their attractive properties,encouraging the development of high-performance devices for emerging application domains such as wearable electronics and the Internet of Things.Specifically,the development of high-performance perovskite-based photodetectors(PDs)as an ultimate substitute for conventional PDs made of inorganic semiconductors such as silicon,InGaAs,GaN,and germanium-based commercial PDs,attracts great attention by virtue of its solution processing,film deposition technique,and tunable optical properties.Importantly,perovskite PDs can also deliver high performance without an external power source;so-called self-powered perovskite photodetectors(SPPDs)have found eminent application in next-generation nanodevices operating independently,wirelessly,and remotely.Earlier research reports indicate that perovskite-based SPPDs have excellent photoresponsive behavior and wideband spectral response ranges.Despite the high-performance perovskite PDs,their commercialization is hindered by long-term material instability under ambient conditions.This review aims to provide a comprehensive compilation of the research results on self-powered,lead–halide perovskite PDs.In addition,a brief introduction is given to flexible SPPDs.Finally,we put forward some perspectives on the further development of perovskite-based self-powered PDs.We believe that this review can provide state-of-the-art current research on SPPDs and serve as a guide to improvising a path for enhancing the performance to meet the versatility of practical device applications.
基金supported by the National Natural Science Foundation of China(22179053,21905119)Jiangsu Six Talent Peaks Program(XNY066)+2 种基金the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51922032,21961160720).
文摘Since metal halide perovskites were utilized as visible-light-harvesting materials for solar cells in 2009,power conversion efficiencies(PCEs)for metal halide perovskite solar cells(PSCs)have already reached to a certified value of 25.7%,making PSCs to be a promising next-generation photovoltaic technology[1−5].Compositional engineering of perovskite materials is an effective approach for achieving highly efficient and stable PSCs[6−8].
基金supported by the National Natural Science Foundation of China(Grant No.11864008)Guangxi Natural Science Foundation,China(Grant Nos.2018GXNSFAA138185,2018AD19200,and 2019GXNSFGA245006).
文摘Although lead-based perovskite solar cells have achieved more than 25%power conversion efficiency,the toxicity of lead and instability are still urgent problems faced in industrial application.Lead-free halide double perovskite(DP)materials are promising candidates to resolve these issues.Based on the density functional theory,we explore the geometric stability,thermodynamic stability,mechanical stability,electronic structures,and optical properties of theCs_(2)B 0BiI_(6)(B 0=Li,Na and K)DP materials.By analyzing the tolerance factor and octahedral factor,we find the geometric stabilities ofCs_(2)NaBiI_(6) andCs_(2)KBiI_(6) DPs are better thanCs_(2)LiBiI_(6).By calculating the total energy,formation energy and decomposition energy,we propose that the most favorable structure ofCs_(2)B 0BiI_(6) is the orthorhombic phase,andCs_(2)LiBiI_(6) is less stable relative to the other two counterparts from an energetic viewpoint.Mechanical stability evaluations reveal that the orthorhombicCs_(2)LiBiI_(6) material is less stable relative to the isostructuralCs_(2)NaBiI_(6) andCs_(2)KBiI_(6) DPs.The mechanical property calculations indicate that theCs_(2)B 0BiI_(6) DPs possess good ductility,which can be used as flexible materials.Electronic structures and optical property calculations show that the orthorhombicCs_(2)B 0BiI_(6) DPs have suitable band gap values,weaker exciton binding energies,and excellent optical absorption performance in the visible-light range.Based on the above comprehensive assessments,we can conclude that the orthorhombic Cs_(2)NaBiI_(6) and Cs_(2)KBiI_(6) DPs with good stability are promising candidates for solar cell applications.
基金the Natural Science Foundation of China(51972172,91833304,91733302)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,China(BK20200034)+3 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2021JLM-43)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(2020GXLH-Z-007,2020GXLH-Z-014)the Projects of International Cooperation and Exchanges NSFC(51811530018)the Young 1000 Talents Global Recruitment Program of China。
文摘Replacing lead iodide(PbI_(2))with suitable non-halides lead source has been found to be an effective method to control crystallization and fabricate high-performance perovskite solar cells(PSCs).However,the solubility of non-halide lead sources is highly limited by traditional solvents due to the chemical interaction limitation.Here,we report a series of non-halide lead sources(e.g.,lead acetate(PbAc_(2)),lead sulfate(PbSO_(4)),lead carbonate(PbCO_(3)),lead nitrate(Pb(NO_(3))_(2)),lead formate(Pb(HCOO)_(2))and lead oxalate(PbC_(2)O_(4)))can be well dissolved in an ionic liquid solvent methylammonium acetate(MAAc).We found that the universal strong coordination of C=O with lead ion(Pb^(2+))and the formation of hydrogen bonds were observed in perovskite precursor solution.This allows the dissolution of non-halide lead salts and is able to produce perovskite film with smooth,compact,and full coverage crystal grain.The power conversion efficiency(PCE)of 14.48%,19.21%,and 20.13%in PSCs based on PbSO_(4),PbAc_(2),and PbCO_(3) was achieved,respectively,in the absence of any additives and passivation agents.This study demonstrates the universality of ionic liquid for the preparation of PSCs based on nonhalides lead sources.