期刊文献+
共找到2,933篇文章
< 1 2 147 >
每页显示 20 50 100
Manufacture and Cytotoxicity of a Lead-free Piezoelectric Ceramic as a Bone Substitute—Consolidation of Porous Lithium Sodium Potassium Niobate by Cold Isostatic Pressing 被引量:3
1
作者 Qi Wang Jun Yang +4 位作者 Wu Zhang Roxanne Khoie Yi-ming Li Jian-guo Zhu Zhi-qing Chen 《International Journal of Oral Science》 SCIE CAS CSCD 2009年第2期99-104,共6页
Aim The piezoelectric properties and cytotoxicity of a porous lead-free piezoelectric ceramic for use as a direct bone substitute were investigated. Methodology Cold isostatic pressing (CIP) was applied to fabricate... Aim The piezoelectric properties and cytotoxicity of a porous lead-free piezoelectric ceramic for use as a direct bone substitute were investigated. Methodology Cold isostatic pressing (CIP) was applied to fabricate porous lithium sodium potassium niobate (Li0.06Na0.5K0.44) NbO3 specimens using a pore-forming method. The morphologies of the CIP-processed specimens were characterized and compared to those of specimens made by from conventional pressing procedures. The effects of the ceramic on the attachment and proliferation of osteoblasts isolated from the cranium of 1-day-old Sprague- Dawley rats were examined by a scanning electron microscopy (SEM) and metbylthiazol tetrazolium (MTT) assay. Results The results showed that CIP enhanced piezoelectricity and biological performance of the niobate specimen, and also promoted an extracellular matrix-like topography of it. In vitro studies showed that the CIP-enhanced material had positive effects on the attachment and proliferation of osteoblasts. Conclusion Niobate ceramic generated by CIP shows a promise for being a piezoelectric composite bone substitute. 展开更多
关键词 lead-free piezoelectric ceramic cold isostatic pressing (CIP) CYTOCOMPATIBILITY OSTEOBLAST
下载PDF
Microstructure and electrical properties of Ti-modified (Na_(0.5)K_(0.5))(Ti_xNb_(1-x))O_3 lead-free piezoelectric ceramics 被引量:1
2
作者 Zhang, Qian Zhang, Boping +2 位作者 Zhao, Pei Li, Haitao Zhang, Limin 《Rare Metals》 SCIE EI CAS CSCD 2009年第2期142-146,共5页
Ti-Modified (Na0.5K0.5)(TixNb1-x)O3 (NKNT) piezoelectric ceramics were fabricated by double-layer buried powder process at 1020°C for 2 h. The microstructures,and piezoelectric and dielectric properties of the le... Ti-Modified (Na0.5K0.5)(TixNb1-x)O3 (NKNT) piezoelectric ceramics were fabricated by double-layer buried powder process at 1020°C for 2 h. The microstructures,and piezoelectric and dielectric properties of the lead-free NKNT ceramics were investigated. X-ray diffraction re-sults indicated that Ti4+ had diffused into the (Na0.5K0.5)NbO3 lattices to form a solid solution with a perovskite structure. The introducing of Ti into the (Na0.5K0.5)NbO3 solid solution effectively reduced the sintering temperature and... 展开更多
关键词 lead-free piezoelectric ceramics TI-DOPED piezoelectric property dielectric property normal sintering oxygen vacancies
下载PDF
Effects of Na/K ratio on the phase structure and electrical properties of Na_xK_(1-x)NbO_3 lead-free piezoelectric ceramics 被引量:1
3
作者 ZHANG Qian, ZHANG Boping, Li Haitao, and SHANG Pengpeng School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第2期220-225,共6页
Lead-free piezoelectric NaxK1-xNbO3(x = 0.3-0.8)(NKN) ceramics were fabricated by normal sintering at 1060°C for 2 h.Microstructures and electrical properties of the ceramics were investigated with a special ... Lead-free piezoelectric NaxK1-xNbO3(x = 0.3-0.8)(NKN) ceramics were fabricated by normal sintering at 1060°C for 2 h.Microstructures and electrical properties of the ceramics were investigated with a special emphasis on the influence of Na content.The grain size of the produced dense ceramic was decreased by increasing Na content.A discontinuous change in the space distance was found at the composition close to Na0.7K0.3NbO3 ceramic, which indicates the presence of a transitional composition between two different orthorhombic phases, which is similar to the behavior of morphotropic phase boundary(MPB) in NaxK1-xNbO3 ceramics.Such MPB-like behavior contributes to the enhanced piezoelectric coefficient d33 of 122 pC/N, planar-mode electromechanical coupling coefficient kP of 28.6%, and dielectric constant εr of 703, respectively for the Na0.7K0.3NbO3 ceramic.Cubic temperature TC and the transitional temperature TO-T from orthorhombic to tetragonal phase are observed at around 420°C and 200°C, respectively. 展开更多
关键词 lead-free piezoelectric ceramics NKN sintering morphotropic phase boundary(MPB)
下载PDF
Microstructures and Electrical Properties of Bi_(0.5)-(Na_(1-x-y)K_xLi_y)_(0.5)TiO_3 Lead-free Piezoelectric Ceramics
4
作者 张菁 吕文中 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第3期361-364,共4页
The microstructures and electrical properties of Bi0.5(Na1-x-yKxLiy)0.5TiO3 lead-free piezoelectric ceramics were studied.These ceramics were prepared by conventional ceramic technique.XRD analysis reveals that the ... The microstructures and electrical properties of Bi0.5(Na1-x-yKxLiy)0.5TiO3 lead-free piezoelectric ceramics were studied.These ceramics were prepared by conventional ceramic technique.XRD analysis reveals that the ceramics possess almost pure perovskite phase when y≤0.2.The SEM results show that,with more amounts of Li+,the crystalline grain growing speed is accelerated,and the sintering temperature can effectively be decreased.The measurements of piezoelectric properties indicate that the ceramics with relatively low amount of Li+ and high amount of K+ have comparatively large piezoelectricity.The dielectric measurements show that the ceramics have properties like relaxor ferroelectrics and diffuse phase transition(DPT) at Td and Tc,respectively.The results of ferroelectric measurements reveal the system has relatively higher remanent polarization Pr(27.6 μC/cm2) and lower coercive field Ec(37.5 kV/cm). 展开更多
关键词 Bi0.5Na0.5TiO3 lead-free piezoelectric ceramics piezoelectric property remanent polarization
下载PDF
Influence of Sb_2O_3 doping on the properties of KBT-NBT-BT lead-free piezoelectric ceramics 被引量:4
5
作者 HUANG Xinyou GAO Chunhua WEI Minxian CHEN Zhigang CUI Yongzhen 《Rare Metals》 SCIE EI CAS CSCD 2011年第1期72-75,共4页
0.144(K0.5Bi0.5)TiO3-0.85(Na0.5Bi0.5)TiO3-0.006BaTiO3(KBT-NBT-BT) lead-free piezoelectric ceramics were prepared using a conventional solid state method.The influence of Sb2O3 doping on the crystal phase,surface... 0.144(K0.5Bi0.5)TiO3-0.85(Na0.5Bi0.5)TiO3-0.006BaTiO3(KBT-NBT-BT) lead-free piezoelectric ceramics were prepared using a conventional solid state method.The influence of Sb2O3 doping on the crystal phase,surface microstructure and properties of the KBT-NBT-BT lead-free piezoelectric ceramics were investigated using X-ray diffraction(XRD),scanning electron microscope(SEM) and other analytical methods.The results show that all compositions are of pure perovskite structure solid states.Sb2O3 doping does not influence the microstructure of KBT-NBT-BT lead-free piezoelectric ceramics obviously in the Sb2O3 doping range of 0.1-0.5 wt.%.Sb2O3 functions as a donor when doped small amount,while functions as a acceptor when doped large amount.The piezoelectric strain constant(d33) increases first and then decreases;the dielectric constant(ε33^T/ε0) and the dielectric loss(tanδ) decrease continuously when the amount of Sb2O3 dopant increases.When the doping amount of Sb2O3 is 0.1 wt.%,the KBT-NBT-BT piezoelectric ceramics with good comprehensive properties are obtained,whose d33,ε33^T/ε0 and tanδ are 147 pC/N,1510 and 4.2%,respectively. 展开更多
关键词 nonmetallic materials piezoelectric ceramics DOPING piezoelectricITY dielectric properties
下载PDF
Modified phase transition and electrical properties of [Li_(0.05)(Na_(0.535)K_(0.48))_(0.95)]- (Nb_(0.94)Sb_(0.06))O_3 lead-free piezoelectric ceramic by sintering temperature 被引量:1
6
作者 Zhao Xiaokun Zhang Boping +3 位作者 Zhao Lei Zhu Lifeng Li Yan Cheng Liqian 《Rare Metals》 SCIE EI CAS CSCD 2012年第6期590-594,共5页
Li/Sb-doped (Na,K)NbO3 with a nominal composition of [Li0.05(Na0.535K0.48)0.95](Nb0.94Sb0.06)O3 ceramic was synthesized by normal sintering. The phase structure, microstructure, and electrical properties were investig... Li/Sb-doped (Na,K)NbO3 with a nominal composition of [Li0.05(Na0.535K0.48)0.95](Nb0.94Sb0.06)O3 ceramic was synthesized by normal sintering. The phase structure, microstructure, and electrical properties were investigated with a special emphasis on the influence of the sintering temperature. A polymorphic phase transition (PPT) from orthorhombic to tetragonal symmetry was observed when the sintering temperature was raised from 1040 to 1050 ℃, whereby the piezoelectric coefficient d33 and the electromechanical coupling coefficient kp reached the peak values of 245 pC·N-1 and 41.2%, respectively. The PPT induced by varying the sintering temperature is due to the different volatilization extents of alkali metals and appears to a lower sintering temperature with increasing Li content. The trace modifying of alkali metal content is more effective than doping B site element to enhance the d33 value. 展开更多
关键词 lead-free sintering temperature microstructure phase piezoelectric properties piezoelectric ceramic
下载PDF
Microstructure,crystalline phase and electrical properties of Li_(0.06)(Na_(0.5)K_(0.5))_(0.94)Nb_(1-2x/5)Mg_xO_3 lead-free piezoelectric ceramics 被引量:1
7
作者 Hai-tao Li Bo-ping Zhang +2 位作者 Qian Zhang Peng-peng Shang Gao-lei Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第3期340-346,共7页
MgO-modified Li0.06(Na0.5K0.5)0.94NbO3O3 (L6NKN) lead-free piezoelectric ceramics were synthesized by normal sintering at a rela- tively low temperature of 1000℃. The crystalline phase, microstructure, and electr... MgO-modified Li0.06(Na0.5K0.5)0.94NbO3O3 (L6NKN) lead-free piezoelectric ceramics were synthesized by normal sintering at a rela- tively low temperature of 1000℃. The crystalline phase, microstructure, and electrical properties of the ceramics were investigated with a special emphasis on the influence of MgO content. The addition of MgO effectively improves the sintembility of the L6NKN ceramics. X-my diffr cfion analysis indicates that the morphotropic phase boundary (MPB) separating orthorhombic and tetragonal phases for the ceramics lies in the range of Mg doping content (x) from 0.3at% to 0.7at%. High electrical properties of the piezoelectric constant (d33=238 pC/N), planar electromechanical coupling coefficient (kp=41.5%), relative dielectric constant (εr=905), and remanent polarization (Pr=38.3 μC/cm2) are obtained from the specimen with x=0.5at%, which suggests that the Li0.06(Na0.5K0.5)0.94Nb(1-2x/5)MgxO3 (x=0.5at%) ceramic is a promising lead-free piezoelectric material. 展开更多
关键词 lead-flee piezoelectric ceramics SINTERABILITY SINTERING morphotropic phase boundary
下载PDF
Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K_(0.5)Na_(0.5)NbO_3-0.04LiSbO_3 lead-free piezoelectric ceramics
8
作者 赵静波 杜红亮 +2 位作者 屈绍波 张红梅 徐卓 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期436-440,共5页
Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K0.5+xNa0.5+xNbO3- 0.04LiSbO3 lead-free piezoelectric ceramics were examined for 0 ≤ x ≤0.02. The piezoelectric coefficients e... Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K0.5+xNa0.5+xNbO3- 0.04LiSbO3 lead-free piezoelectric ceramics were examined for 0 ≤ x ≤0.02. The piezoelectric coefficients exhibited a maximum, d33 = 187 pC/N at x = 0.0075, coinciding with the maximum of the grain size and the apparent density at x = 0.0075. The apparent density and the piezoelectric coefficients decreased with increasing x at higher x which was likely due to the crystal geometrical distortion of 0.96K0.5+xNa0.5+xNbO3-0.04LiSbO3. In addition, super-large grains were found and this may be due to liquid phase sintering. Excess (K++Na+) attracted a sum of space charges to keep the charge neutral, resulting in charge leakage during the course of ceramic polarization, influencing the piezoelectric and ferroelectric properties. These findings are of importance for guiding the design of Ko.sNao.sNbO3-based lead-free ceramics with enhanced electrical properties. 展开更多
关键词 lead-free ceramics piezoelectric NON-STOICHIOMETRY K0.5Na0.5sNbO3
下载PDF
Enhanced electric-field induced strain in Eu^(3+) doped 0.67BiFeO_(3)-0.33BaTiO_(3) lead-free piezoelectric ceramics
9
作者 Wei Li Tongxiang Liang +3 位作者 Xiang He Vyunov Oleg Dongfang Pang Shan Wu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第9期1747-1754,I0004,共9页
Lead-free ferroelectric ceramics,0.67Bi_(1-x)Eu_(x)FeO_(3)-0.33BaTiO_(3)(BF-BT-xEu,x=0-0.02),were prepared via a solid-state reaction,The effect of Eu^(3+) doping on the microstructure,dielectric properties,ferroelect... Lead-free ferroelectric ceramics,0.67Bi_(1-x)Eu_(x)FeO_(3)-0.33BaTiO_(3)(BF-BT-xEu,x=0-0.02),were prepared via a solid-state reaction,The effect of Eu^(3+) doping on the microstructure,dielectric properties,ferroelectric properties,and electric-field-induced strain was investigated.The X-ray diffraction(XRD) results indicate the presence of a mixed phase of tetragonal and rhombohedral at the morphotropic phase boundary(MPB).Doping with an appropriate amount of Eu^(3+) reduces the Fe^(3+) content and decreases the leakage current in the binary system.A converse piezoelectric coefficient(d_(33)*) of 392 pm/V is obtained at BF-BT-0.003Eu under an electric field of 60 kV/cm at room temperature,which has a Curie temperature(T_(C)) of 414℃,The unipolar strain and d_(33)* of BF-BT-0.003Eu ceramics increase to 0.438%and 730 pm/V at 125℃ The field-induced strain response of the BF-BT-0.003Eu ceramics is greater than that of 0.67BF-0.33BT,mainly due to its optimal grain size,reduction of leakage current,and coexistence of ferroelectric-relaxation phases,BF-BT-0.003Eu ceramic is a lead-free candidate for high-temperature actuator applications. 展开更多
关键词 FERROELECTRIC Field-induced strain ceramicS lead-free Rare earths
原文传递
Research of Lead-free Na_(0.5)Bi_(0.5)TiO_(3)-BaTiO_(3)System Piezoelectric Ceramics
10
作者 ZHANG Weifeng LIU Ming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期325-329,共5页
To reduce the coercive field of Na_(0.5)Bi_(0.5)TiO_(3),Ba TiO_(3)were added as dopant materials.Then the(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xBaTiO_(3)ceramic samples were produced in solid synthetic way.The optimum preparat... To reduce the coercive field of Na_(0.5)Bi_(0.5)TiO_(3),Ba TiO_(3)were added as dopant materials.Then the(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xBaTiO_(3)ceramic samples were produced in solid synthetic way.The optimum preparation condition and piezoelectric properties of the samples were investigated.The XRD results show that the fabric transites from rhombohedral to tetragonal gradually with the substitution of the Ba^(2+).The morphotropic phase boundaries(MPB)exists in the composition range of 0.06. 展开更多
关键词 lead-free piezoelectric ceramic Na_(0.5)Bi_(0.5)TiO_(3) BaTiO_(3) piezoelectric performance
下载PDF
Enhanced piezoelectric properties and depolarization temperature in textured(Bi_(0.5)Na_(0.5))TiO_(3)-based ceramics via homoepitaxial templated grain growth
11
作者 Yaqing Ma Linjing Liu +6 位作者 Hang Xie Zerui Zhang Qiangwei Kou Rui Lv Bin Yang Yunfei Chang Fei Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第9期91-98,共8页
Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applic... Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in composition&microstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91%were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280%enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics. 展开更多
关键词 lead-free ceramics Templated grain growth piezoelectric coefficient Depolarization temperature Domain dynamics
原文传递
A Hybrid Compensation Scheme for the Input Rate-Dependent Hysteresis of the Piezoelectric Ceramic Actuators
12
作者 DONG Ruili TAN Yonghong +1 位作者 HOU Jiajia ZHENG Bangsheng 《Journal of Donghua University(English Edition)》 CAS 2024年第4期436-446,共11页
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr... A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system. 展开更多
关键词 hybrid control input rate-dependent hysteresis inverse model neural network piezoelectric ceramic actuator
下载PDF
Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
13
作者 辛睿 王亚祺 +6 位作者 房泽 郑凤基 高雯 付大石 史国庆 刘建一 张永成 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期81-88,共8页
Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different conce... Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs. 展开更多
关键词 Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)ceramic physics-embedded machine learning piezoelectric coefficient Curie temperature
下载PDF
Influence of CeO_2 doping amount on property of BCTZ lead-free piezoelectric ceramics sintered at low temperature 被引量:8
14
作者 黄新友 邢仁克 +1 位作者 高春华 陈志刚 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第8期733-737,共5页
Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) lead-free piezoelectric ceramics co-doped with CeO2 (x=0.1 wt.%, 0.2 wt.%, 0.3 wt.%, 0.4 wt.%, 0.5 wt.%) and Li2CO3 (0.6 wt.%) were prepared by conventional solid-state reaction m... Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) lead-free piezoelectric ceramics co-doped with CeO2 (x=0.1 wt.%, 0.2 wt.%, 0.3 wt.%, 0.4 wt.%, 0.5 wt.%) and Li2CO3 (0.6 wt.%) were prepared by conventional solid-state reaction method. Influence of CeO2 doping amount on the piezoelectric properties, dielectric properties, phase composition and microstructure of prepared BCTZ lead-free piezoelectric ceramics doped with Li2CO3 were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and other analytical methods. The results showed that the sintered temperature of BCTZ lead-free piezoelectric ceramics doped with CeO2 decreased greatly when Li2CO3 doping amount was 0.6 wt.%;a pure perovskite structure of BCTZ lead-free piezoelectric ceramics co-doped with Li2CO3 and CeO2 and sintered at 1050 ℃ could also be obtained. The piezoelectric constant (d33), the relative permit-tivity (εr) and the planar electromechanical coupling factor (kp) of BCTZ ceramics doped with Li2CO3 increased firstly and then de-creased, the dielectric loss (tanδ) decreased firstly and then increased and decreased at last when CeO2 doping amount increased. The influence of CeO2 doping on the properties of BCTZ lead-free piezoelectric ceramics doped with Li2CO3 were caused by“soft effect”and “hard effect”piezoelectric additive and causing lattice distortion. When CeO2 doping amount (x) was 0.2 wt.%, the BCTZ ceramics doped with Li2CO3 (0.6 wt.%) and sintered at 1050 ℃ possessed the best piezoelectric property and dielectric property with d33 of 436 pC/N, kp of 48.3%,εr of 3650, tanδof 1.5%. 展开更多
关键词 lead-free piezoelectric ceramics barium calcium zirconate and titanate CeO2 doping rare earths piezoelectric property
原文传递
Multi-phase structure and electrical properties of Bi_(0.5)Li_(0.5)ZrO_3 doping K_(0.48)Na_(0.56)NbO_3 lead-free piezoelectric ceramics 被引量:5
15
作者 Xiaoyan PENG Boping ZHANG +4 位作者 Lifeng ZHU Lei ZHAO Ruixiao MA Bo LIU Xiaodong WANG 《Journal of Advanced Ceramics》 SCIE CSCD 2018年第1期79-87,共9页
(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3(KNN–x BLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric pr... (1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3(KNN–x BLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as T_C were systematically investigated. The orthorhombic–tetragonal(O–T) two phases were detected in all(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 ceramics at 0.01 ≤ x ≤ 0.05. Due to the appropriate ratio between O phase and T phase(CO/C T= 45/55), high piezoelectric properties of d 33= 239 pC/N, k_p= 34%, and P_r = 25.23 μC/cm^2 were obtained at x = 0.04. Moreover, a high T_C = 348 ℃ was also achieved in KNN–x BLZ ceramic at x = 0.04. These results indicate that (1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 system is a promising candidate for high-temperature piezoelectric devices. 展开更多
关键词 lead-free piezoelectric ceramics potassium–sodium niobate (KNN) solid-state sintering MULTI-PHASE electrical properties
原文传递
Synthesis and Electrical Properties of Li-modified Bi_(0.5)Na_(0.5)TiO_3-BaTiO_3 Lead-free Piezoelectric Ceramics 被引量:3
16
作者 Yunweu Liao Dingquan Xiao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第6期777-780,共4页
Lead-free piezoelectric ceramics (1-y)Bi0.5(Na1-xLix)0.5TiO3-yBaTiO3 with x=0-0.125 and y=0.02-0.12 were fabricated by a solid-state reaction process, and their dielectric, piezoelectric and ferroelectric properti... Lead-free piezoelectric ceramics (1-y)Bi0.5(Na1-xLix)0.5TiO3-yBaTiO3 with x=0-0.125 and y=0.02-0.12 were fabricated by a solid-state reaction process, and their dielectric, piezoelectric and ferroelectric properties were investigated. The results show that the addition of Li^+ significantly improves the sintering performance and piezoelectric properties of the ceramics. X-ray diffraction (XRD) patterns indicate that the ceramics possess pure perovskite structure. At room temperature, the ceramics provide high piezoelectric charge constant d33 (up to 210 pC/N), high planar electromechanical coupling factor kp (34.5%), large remanent polarization Pr (up to 40 μC/cm^2), and low coercive field Ec (3.0 kV/mm), which indicates that (1-y)Bi0.5(Na1-xLix)0.5TiO3-yBaTi03 is a good lead-free piezoelectric ceramic. 展开更多
关键词 lead-free piezoelectric ceramic Bi0.5Na0.5TiO3 MICROSTRUCTURE piezoelectricITY
原文传递
Effect of Li content on the microstructure and properties of lead-free piezoelectric(K_(0.5)Na_(0.5))_(1-x)Li_xNbO_3 ceramics prepared by SPS 被引量:3
17
作者 Pei Zhao Boping Zhang Ke Wang Limin Zhang Hailong Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第3期314-319,共6页
Lead-free piezoelectric (K0.5sNa0.5)1-xLixNbO3 (x = 0at%-20at%) ceramics were synthesized by spark plasma sintering (SPS) at low temperature and the effects of LiNbO3 addition on its crystal structure and proper... Lead-free piezoelectric (K0.5sNa0.5)1-xLixNbO3 (x = 0at%-20at%) ceramics were synthesized by spark plasma sintering (SPS) at low temperature and the effects of LiNbO3 addition on its crystal structure and properties were also studied. When the Li content was less than 6at%, a single proveskite phase with the similar structure of (K0.5Na0.5)NbO3 was formed; and a secondary phase with K3Li2Nb5O15 structure was observed in the 6at% 〈 x 〈 20at% compositional range. Furthermore, LiNbO3 existed as the third phase when the Li content was higher than 8at%. The grain sizes increased from 200-500 nm to 5-8 μm when the K3Li2Nb5O15 and LiNbO3 like phases were formed. With increasing Li content, the relative density of the ceramics first decreased from 97% to 93% and then kept constant. The piezoelectric coefficient d33, dielectric constant, and planner electromechanical coupling factor exhibited a decreasing tendency with increasing Li content because of the decrease in density and the formation of the secondary phase such as K3Li2Nb5O15 and LiNbO3. The formation of dense microstructure with a single phase is necessary in improving the properties of the (K0.5Na0.5)1-xLixNbO3 ceramics. 展开更多
关键词 lead-free piezoelectric ceramics spark plasma sintering crystal structure piezoelectric properties
下载PDF
PROGRESSES AND FURTHER CONSIDERATIONS ON THE RESEARCH OF PEROVSKITE LEAD-FREE PIEZOELECTRIC CERAMICS 被引量:3
18
作者 DINGQUAN XIAO 《Journal of Advanced Dielectrics》 CAS 2011年第1期33-40,共8页
The research on lead-free piezoelectric ceramics has been one of the importantfields worldwide for years for the sustainable development of the world.In recent years,the author and his group concentrated their work on... The research on lead-free piezoelectric ceramics has been one of the importantfields worldwide for years for the sustainable development of the world.In recent years,the author and his group concentrated their work on perovskite lead-free piezoelectric ceramics,especially on(Bi_(1/2)Na_(1/2))TiO_(3)(BNT)-and K_(1/2)Na_(1/2)NbO_(3)(KNN)-based ceramics.In this paper,the researches of the composition design on BNT-and KNN-based lead-free piezoelectric ceramics,the effects of doping on the properties of these ceramics,the study of the temperature stability of these ceramics,and the fabrication technique used in the author's group for these ceramics are reviewed,and the further considerations and some prospects to be resolved in coming years from the viewpoint of the device applications of these ceramics are suggested. 展开更多
关键词 lead-free piezoelectric ceramics (Bi_(1/2)Na_(1/2))TTiO_(3)(BNT) K_(1/2)Na_(1/2)NbO_(3)(KNN) perovskite structure
原文传递
Large electro-strain signal of the BNT-BT-KNN lead-free piezoelectric ceramics with CuO doping 被引量:2
19
作者 Zhi-Hao Zhao Rui-Fang Ge Yejing Dai 《Journal of Advanced Dielectrics》 CAS 2019年第3期12-18,共7页
This paper investigates a system of 0.93Bi_(0.5)Na_(0.5)TiO_(3)–0.06BaTiO_(3)–0.01K_(0.5)Na_(0.5)NbO_(3)–xCuO(BNT–BT–KNN–xCuO,x=0-0:04 mol.%)ceramics,which were fabricated by the conventional solid-state process... This paper investigates a system of 0.93Bi_(0.5)Na_(0.5)TiO_(3)–0.06BaTiO_(3)–0.01K_(0.5)Na_(0.5)NbO_(3)–xCuO(BNT–BT–KNN–xCuO,x=0-0:04 mol.%)ceramics,which were fabricated by the conventional solid-state process through the granulation of vacuum freeze drier.The results show that the CuO doping made a significant enhancement on the piezoelectric properties of the BNT–BT–KNN ceramics.With the doping of CuO,the transition temperature between ferroelectric phase and ergodic relaxor state is reduced to near room temperature,resulting in pinched P–E loops and“sprout”shape S-E curves.For the composition with x=0.01,a high unipolar strain of 0.39%under 5 kV/mm contributes a large d^(*)33~780 pm/V at room temperature,which is competitive with the other BNT-based ceramics. 展开更多
关键词 lead-free piezoelectric ceramics BNT-based CuO dopant electro-strain
原文传递
Preparation and Piezoelectric Properties of CuO-added(Ag_(0.75)Li_(0.1)Na_(0.1)K_(0.05_)NbO_3 Lead-free Ceramics 被引量:3
20
作者 吴浪 NING Haixia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期724-728,共5页
CuO-doped(Ag0.75Li0.1Na0.1K0.05)NbO3(ALNKN-xCuO, x = 0.2mol%) lead-free piezoelectric ceramics were prepared by the solid-state reaction method in air atmosphere. The effects of CuO addition on the phase structure... CuO-doped(Ag0.75Li0.1Na0.1K0.05)NbO3(ALNKN-xCuO, x = 0.2mol%) lead-free piezoelectric ceramics were prepared by the solid-state reaction method in air atmosphere. The effects of CuO addition on the phase structure, microstructure, and piezoelectric properties of the ceramics were investigated. The experimental results show that the ALNKN ceramics without doping CuO possess rhombohedral phase along with K2NbrO16- type phase and metallic silver phase. For all of the CuO-doped ALNKN ceramics, a pure perovskite structure with the orthorhombic phase was obtained by enclosing the samples in a corundum tube. A homogeneous microstructure with'the grain size of about 1 ~tm was formed for the ceramics with 0.5mo1% CuO. The grain size increases with increasing amount of CuO. The temperature dependence of dielectric properties indicates that the ferroelectric phase of the ALNKN-xCuO ceramics becomes less stable with the addition of CuO. The ceramics with x = lm01% exhibit relatively good electrical properties along with a high Curie temperature. These results will provide a helpful guidance to preparing other AN-based ceramics by solid-state reaction method in air atmosphere. 展开更多
关键词 (Ag0.75Li0.1Na0.1K0.05)NbO3 lead-free ceramics piezoelectric properties CUO
下载PDF
上一页 1 2 147 下一页 到第
使用帮助 返回顶部