A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted a...A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.展开更多
Tuotuo River region(E91°-E93°,N33°-N 35°) is located in southwest Qinghai Province,P.R.China.It lies in one of the most important metallogenic belts in China—Northwest Sanjiang Metallogenic Belt,d...Tuotuo River region(E91°-E93°,N33°-N 35°) is located in southwest Qinghai Province,P.R.China.It lies in one of the most important metallogenic belts in China—Northwest Sanjiang Metallogenic Belt,due to which Tuotuo River region can be of very high metal mineral potential not only in Qinghai Province but also nationwide.In this research,multisource data sets including geological,geochemical,geophysical, and remotely sensed images were integrated for mineral potential analysis with GIS technology.Under the guidance of regional metallogenic features and deposit-forming geologic anomaly theories,evidential layers were obtained from these sets,which展开更多
The Xianghualing Sn-polymetallic orefield in Hunan Province, southern China, is a largesize tin orefield. Although numerous studies have been undertaken on this orefield, its genesis, mineralization age, and tectonic ...The Xianghualing Sn-polymetallic orefield in Hunan Province, southern China, is a largesize tin orefield. Although numerous studies have been undertaken on this orefield, its genesis, mineralization age, and tectonic setting are still controversial, mainly because of the lack of reliable geochronological data on tin mineralization. The ^40Ar^39Ar stepwise heating dating method was first employed on muscovite from different deposits in this orefield. The muscovite sample from the Xianghualing Sn-polymetallic deposit defines a plateau age of 154.4±1.1 Ma and an isochron age of 151.9±3.0 Ma; muscovite from the Xianghuapu W-polymetallic deposit yields a plateau age of 161.3±1.1 Ma and an isochron age of 160.0±3.2 Ma; muscovite from the Jianfengling greisen-type Sn-polymetallic deposit gives a plateau age of 158.7±1.2 Ma and an isochron age of 160.3±3.2 Ma. The tungsten-tin mineralization ages in the Xianghualing area are therefore restricted within 150-160 Ma. The tungstentin mineralization in Xianghualing occurred at the same time as the regional tin-tungsten mineralization including the Furong tin orefield, Shizhuyuan tungsten-tin polymetallic deposit and Yaogangxian tungsten-polymetallic deposit. Thus, the large-scale tungsten-tin metallogenesis in South China occurring at 160-150 Ma, probably is closely related to asthenospheric upwelling and crustmantle interaction under a geodynamic setting of crustal extension and lithosphere thinning during the transformation of tectonic regimes during the Mid-Late Jurassic.展开更多
The Hehuaping tin deposit is a large deposit found in recent years during geological surveys. The discovered tin deposit includes not only rock-alteration type deposits in fault zones, but also deposits developed in i...The Hehuaping tin deposit is a large deposit found in recent years during geological surveys. The discovered tin deposit includes not only rock-alteration type deposits in fault zones, but also deposits developed in interstratified rupture zones between Devonian carbonate rocks (Qiziqiao Formation) and sandstone (Tiaomajian Formation). The finding of tin deposits of the latter type has greatly enriched tin-mineralization types in the famous Nanling polymetallic metallogenetic region and may provide us with a new potential orientation for prospecting of tin deposits in the region. It is commonly believed that the forming of the tin deposits in the Nanling region should be related to the Yanshanian instead of Indosinian granitic magmatism. Systematical zircon U-Pb SHRIMP dating in this paper shows that tin mineralizations have endured at least two stages. The early stage should be related to the intrusion of the main body of the Wangxianling granite, which was emplaced during the Indosinian period with a diagenetic and minerafized age of 224.0±1.9 Ma (MSWD=0.54), and the late stage should be related to the intrusion of Yanshaulan granitic porphyry that took place after 142±3 Ma (MSWD=0.5).展开更多
Lamprophyres, widely distributed in the Laowangzhai gold orefield, Yunnan province, China, and closely related to gold mineralization in time and space, can be distinguished into three kinds: the fresh (weakly altered...Lamprophyres, widely distributed in the Laowangzhai gold orefield, Yunnan province, China, and closely related to gold mineralization in time and space, can be distinguished into three kinds: the fresh (weakly altered ), the altered, and the mineralized lamprophyres. These lamprophyres in the orefield are similar in the range of BEE contents and REE patterns, but definitely different in parameters of LRE/HRE, NLa/Yb etc. The geochemistry of REE in fresh lamprophyre shows flat the rock is a product of different partial melting of the enriched mantle. Calculation results of mass balance of REE activity regularity in the process of alteration and mineralization of the lalnprophyres in the orefield shows that the altering fluids and mineralizing fluids contain REE, and these fluids are mainly [he products of mantle degassing and magma degassing during the lamprophyric magmatism.展开更多
Regional stream sediment surveys at a 1:200,000 scale reveal positive andnegative regional multi-element geochemical anomalies over medium to large copper-polymetallicorefields of different genetic types in China. Reg...Regional stream sediment surveys at a 1:200,000 scale reveal positive andnegative regional multi-element geochemical anomalies over medium to large copper-polymetallicorefields of different genetic types in China. Regional geochemical anomalies of orefield refer tothose geochemical anomalies that are related to metallogenesis of an orefield in a certain area. Theanomaly area is typically 10 to 100 km^2. The regional multi-element anomalies related tomineralization can be divided into three groups, that is, the ore-element anomaly association,indicator element anomaly association, and metallogenic environmental element anomaly association.Their common spatial distributions over ore deposits or orefields possess unique structures. Themodel of spatial structure of regional multi-element geochemical anomalies (RAGSS) of an orefielddelineates structural feature possessed by orderly spatial distributions of different groups ofmulti-element anomaly associations related to orefield metallogenesis. It is used to outline thecommon metallogenetic anomaly visage that is composed of the orderly spatial distribution ofdifferent groups of multi-element anomaly associations. The orderly spatial distribution ofmulti-element anomalies over an orefield reflects element distributions as they are changed from adispersed 'out-of-order' state into a concentrated 'orderly' state during the mineralization of anorefield. Three different patterns of the spatial anomaly structure related to mineralization in anorefield can be concluded: (1) nested pattern; (2) eccentric pattern and; (3) peripheral pattern.There are marked differences between multi-element anomaly patterns related and not related tomineralization. RAGSS models of orefields can be used to better understand and evaluate regionalmulti-element anomalies and identify ore types.展开更多
The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield ...The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield in recent years, showing that it belongs to various types, such as sedimentary-reformed type, stratabound-skarn type, sedimentary submarine rocks-hosted exhalative type. We propose that it was formed in two periods of mineralization base on systematic field observation and Pb and S isotopic analyses in nearly ten years. The first period was formed during a syngenetic sedimentary process, whereas the massive sulphide orebodies are mainly related to the Yanshanian granitic magmatism. Sulfide metallic mineral associations show zoning around a granite intrusion, i.e. magnetite and pyrite→pyrite, chalcopyrite and native gold→pyrite, sphalerite and galena. Gold orebodies occur outside the contact zone of the granite intrusion.展开更多
The Qingchengzi orefield is a large polymetallic ore concentration area in the Liaodong peninsula,northeastern China,that includes twelve Pb-Zn deposits and five Au-Ag deposits along its periphery.The ore-forming age ...The Qingchengzi orefield is a large polymetallic ore concentration area in the Liaodong peninsula,northeastern China,that includes twelve Pb-Zn deposits and five Au-Ag deposits along its periphery.The ore-forming age remains much disputed,which prevents the identification of the relationship between the mineralization and the associated magmatism.In this paper,we quantitatively present the feasibility of making ore mineral 40Ar/39Ar dating and report reliable 40Ar/39Ar ages of lamprophyre groundmass,K-feldspar and sphalerite from the Zhenzigou deposit.Direct and indirect methods are applied to constrain the timing of mineralization,which plays a vital role in discussing the contribution of multistage magmatism to ore formation.The low-potassium sphalerite yielded an inverse isochron age of 232.8±41.5 Ma,which features a relatively large uncertainty.Two lamprophyre groundmasses got reliable inverse isochron ages of 193.2±1.3 Ma and 152.3±1.5 Ma,respectively.K-feldspar yielded a precise inverse isochron age of 134.9±0.9 Ma.These four ages indicate that the mineralization is closely associated with Mesozoic magmatism.Consequently,regarding the cooling age of the earliest Mesozoic Shuangdinggou intrusion(224.2±1.2 Ma)as the initial time of mineralization,we can further constrain the age of the sphalerite to 224–191 Ma.These new and existing geochronological data,combined with the interaction cutting or symbiotic relationship between the lamprophyre veins and ore veins,suggest that the Pb-Zn-Au-Ag mineralization in the Qingchengzi orefield mainly occurred during three periods:the late Triassic(ca.224–193 Ma),the late Jurassic(ca.167–152 Ma)and the early Cretaceous(ca.138–134 Ma).This polymetallic deposits are shown to have been formed during multiple events coinciding with periods of the Mesozoic magmatic activity.In contrast,the Proterozoic magmatism and submarine exhalative and hydrothermal sedimentation in the Liaolaomo paleorift served mainly to transport and concentrate the ore-forming substances at the Liaohe Group with no associated Pb-Zn-Au-Ag mineralization.展开更多
基金Project(50874117) supported by the National Natural Science Foundation of China
文摘A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.
文摘Tuotuo River region(E91°-E93°,N33°-N 35°) is located in southwest Qinghai Province,P.R.China.It lies in one of the most important metallogenic belts in China—Northwest Sanjiang Metallogenic Belt,due to which Tuotuo River region can be of very high metal mineral potential not only in Qinghai Province but also nationwide.In this research,multisource data sets including geological,geochemical,geophysical, and remotely sensed images were integrated for mineral potential analysis with GIS technology.Under the guidance of regional metallogenic features and deposit-forming geologic anomaly theories,evidential layers were obtained from these sets,which
基金the Innovative Project of the Chinese Academy of Sciences (Grant No. KZCX3-SW-125) National Natural Science Foundation of China (Grant No. 40472053 , No. 40673021).
文摘The Xianghualing Sn-polymetallic orefield in Hunan Province, southern China, is a largesize tin orefield. Although numerous studies have been undertaken on this orefield, its genesis, mineralization age, and tectonic setting are still controversial, mainly because of the lack of reliable geochronological data on tin mineralization. The ^40Ar^39Ar stepwise heating dating method was first employed on muscovite from different deposits in this orefield. The muscovite sample from the Xianghualing Sn-polymetallic deposit defines a plateau age of 154.4±1.1 Ma and an isochron age of 151.9±3.0 Ma; muscovite from the Xianghuapu W-polymetallic deposit yields a plateau age of 161.3±1.1 Ma and an isochron age of 160.0±3.2 Ma; muscovite from the Jianfengling greisen-type Sn-polymetallic deposit gives a plateau age of 158.7±1.2 Ma and an isochron age of 160.3±3.2 Ma. The tungsten-tin mineralization ages in the Xianghualing area are therefore restricted within 150-160 Ma. The tungstentin mineralization in Xianghualing occurred at the same time as the regional tin-tungsten mineralization including the Furong tin orefield, Shizhuyuan tungsten-tin polymetallic deposit and Yaogangxian tungsten-polymetallic deposit. Thus, the large-scale tungsten-tin metallogenesis in South China occurring at 160-150 Ma, probably is closely related to asthenospheric upwelling and crustmantle interaction under a geodynamic setting of crustal extension and lithosphere thinning during the transformation of tectonic regimes during the Mid-Late Jurassic.
文摘The Hehuaping tin deposit is a large deposit found in recent years during geological surveys. The discovered tin deposit includes not only rock-alteration type deposits in fault zones, but also deposits developed in interstratified rupture zones between Devonian carbonate rocks (Qiziqiao Formation) and sandstone (Tiaomajian Formation). The finding of tin deposits of the latter type has greatly enriched tin-mineralization types in the famous Nanling polymetallic metallogenetic region and may provide us with a new potential orientation for prospecting of tin deposits in the region. It is commonly believed that the forming of the tin deposits in the Nanling region should be related to the Yanshanian instead of Indosinian granitic magmatism. Systematical zircon U-Pb SHRIMP dating in this paper shows that tin mineralizations have endured at least two stages. The early stage should be related to the intrusion of the main body of the Wangxianling granite, which was emplaced during the Indosinian period with a diagenetic and minerafized age of 224.0±1.9 Ma (MSWD=0.54), and the late stage should be related to the intrusion of Yanshaulan granitic porphyry that took place after 142±3 Ma (MSWD=0.5).
基金the National Outstanding Young Scientist Foundation !49625304 the Ministry of Science and Technologyof China!95-pre-39
文摘Lamprophyres, widely distributed in the Laowangzhai gold orefield, Yunnan province, China, and closely related to gold mineralization in time and space, can be distinguished into three kinds: the fresh (weakly altered ), the altered, and the mineralized lamprophyres. These lamprophyres in the orefield are similar in the range of BEE contents and REE patterns, but definitely different in parameters of LRE/HRE, NLa/Yb etc. The geochemistry of REE in fresh lamprophyre shows flat the rock is a product of different partial melting of the enriched mantle. Calculation results of mass balance of REE activity regularity in the process of alteration and mineralization of the lalnprophyres in the orefield shows that the altering fluids and mineralizing fluids contain REE, and these fluids are mainly [he products of mantle degassing and magma degassing during the lamprophyric magmatism.
文摘Regional stream sediment surveys at a 1:200,000 scale reveal positive andnegative regional multi-element geochemical anomalies over medium to large copper-polymetallicorefields of different genetic types in China. Regional geochemical anomalies of orefield refer tothose geochemical anomalies that are related to metallogenesis of an orefield in a certain area. Theanomaly area is typically 10 to 100 km^2. The regional multi-element anomalies related tomineralization can be divided into three groups, that is, the ore-element anomaly association,indicator element anomaly association, and metallogenic environmental element anomaly association.Their common spatial distributions over ore deposits or orefields possess unique structures. Themodel of spatial structure of regional multi-element geochemical anomalies (RAGSS) of an orefielddelineates structural feature possessed by orderly spatial distributions of different groups ofmulti-element anomaly associations related to orefield metallogenesis. It is used to outline thecommon metallogenetic anomaly visage that is composed of the orderly spatial distribution ofdifferent groups of multi-element anomaly associations. The orderly spatial distribution ofmulti-element anomalies over an orefield reflects element distributions as they are changed from adispersed 'out-of-order' state into a concentrated 'orderly' state during the mineralization of anorefield. Three different patterns of the spatial anomaly structure related to mineralization in anorefield can be concluded: (1) nested pattern; (2) eccentric pattern and; (3) peripheral pattern.There are marked differences between multi-element anomaly patterns related and not related tomineralization. RAGSS models of orefields can be used to better understand and evaluate regionalmulti-element anomalies and identify ore types.
基金the State Key Basic Research Program of China(No.G1999043206)the National Natural Science Foundation of China(No.40372050)+1 种基金the Project of Resources Assessment of the Geological Surveyof China(No.200310200064) the Key Laboratory of Lithospheric Tectonics and Lithoprobing Technology.
文摘The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield in recent years, showing that it belongs to various types, such as sedimentary-reformed type, stratabound-skarn type, sedimentary submarine rocks-hosted exhalative type. We propose that it was formed in two periods of mineralization base on systematic field observation and Pb and S isotopic analyses in nearly ten years. The first period was formed during a syngenetic sedimentary process, whereas the massive sulphide orebodies are mainly related to the Yanshanian granitic magmatism. Sulfide metallic mineral associations show zoning around a granite intrusion, i.e. magnetite and pyrite→pyrite, chalcopyrite and native gold→pyrite, sphalerite and galena. Gold orebodies occur outside the contact zone of the granite intrusion.
基金This work was supported by the Ministry of Science and Technology of the People’s Republic of China(Grant No.2016YFC0600109)the Natural Science Foundations of China(Grant No.41521062,41503055).
文摘The Qingchengzi orefield is a large polymetallic ore concentration area in the Liaodong peninsula,northeastern China,that includes twelve Pb-Zn deposits and five Au-Ag deposits along its periphery.The ore-forming age remains much disputed,which prevents the identification of the relationship between the mineralization and the associated magmatism.In this paper,we quantitatively present the feasibility of making ore mineral 40Ar/39Ar dating and report reliable 40Ar/39Ar ages of lamprophyre groundmass,K-feldspar and sphalerite from the Zhenzigou deposit.Direct and indirect methods are applied to constrain the timing of mineralization,which plays a vital role in discussing the contribution of multistage magmatism to ore formation.The low-potassium sphalerite yielded an inverse isochron age of 232.8±41.5 Ma,which features a relatively large uncertainty.Two lamprophyre groundmasses got reliable inverse isochron ages of 193.2±1.3 Ma and 152.3±1.5 Ma,respectively.K-feldspar yielded a precise inverse isochron age of 134.9±0.9 Ma.These four ages indicate that the mineralization is closely associated with Mesozoic magmatism.Consequently,regarding the cooling age of the earliest Mesozoic Shuangdinggou intrusion(224.2±1.2 Ma)as the initial time of mineralization,we can further constrain the age of the sphalerite to 224–191 Ma.These new and existing geochronological data,combined with the interaction cutting or symbiotic relationship between the lamprophyre veins and ore veins,suggest that the Pb-Zn-Au-Ag mineralization in the Qingchengzi orefield mainly occurred during three periods:the late Triassic(ca.224–193 Ma),the late Jurassic(ca.167–152 Ma)and the early Cretaceous(ca.138–134 Ma).This polymetallic deposits are shown to have been formed during multiple events coinciding with periods of the Mesozoic magmatic activity.In contrast,the Proterozoic magmatism and submarine exhalative and hydrothermal sedimentation in the Liaolaomo paleorift served mainly to transport and concentrate the ore-forming substances at the Liaohe Group with no associated Pb-Zn-Au-Ag mineralization.