The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of l...The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.展开更多
The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxide...The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxides in the sandstone and ignimbrite are changed into sulfides. The disproportionation reaction of sulfur in a solution is confirmed as 4S+3H2O=2S^2-+S2O3^2--+6H^+. The dynamics process is studied and the first-order reaction rate equation -1n(1-a)=ktt is obtained. The effects of the reactive products, stirring speed, dosage of sulfuration agent, value of pH and sulphidizing temperature on the sulfuration of oxide ore are investigated. The results indicate that the reactive apparent activation energy is 100.8 kJ/mol and the sulfuration ratio of lead-zinc oxide ore reaches 60% under the conditions of pH 5.9-7.5, the sulfuration temperature of 130 ℃, sulfuration time of 180 min and the stirring speed of 800 r/min.展开更多
Lead-zinc sulphide ore contains lead sulphide (galena), and zinc sulphide (sphalerite). In the first flotation stage, galena is rendered hydrophobic with an organic collector such as xanthate, while sphalerite is kept...Lead-zinc sulphide ore contains lead sulphide (galena), and zinc sulphide (sphalerite). In the first flotation stage, galena is rendered hydrophobic with an organic collector such as xanthate, while sphalerite is kept from floating by depressants, and in the second flotation stage, activator was used to activated zinc flotation. Since the organic regent used are different in the two flotation stage, wastewater from the second zinc flotation stage can’t be directly recycled to the first lead flotation stage. Wastewater from flotation process for concentrating lead-zinc sulphide ore often containing organic compounds such as diethyldithiocarbamate(DDTC), xanthate, terpenic oil(2# oil) and thionocarbamate esters (Z-200), are environmentally hazardous. Their removal from contaminated water and the reuse of the water is one of the main challenges facing lead-zinc sulphide ore processing plants. In this study, synthetic wastewater containing DDTC, xanthate, 2# oil and Z-200 at concentrations ranging from 21 to 42 mg/L was fed into an Ozone/Biological activated carbon (BAC) reactor. Analyses of the effluent indicated a chemical oxygen demand (COD) removal over 86.21% and Total organic carbon (TOC) removal over 90.00% were achieved under Hydraulic retention time (HRT) of 4h and O3 feeding concentration of 33.3mg/L. The effluent was further recycled to the lab scale lead concentrating process and no significant difference was found in compare with fresh water. Furthermore, lead-zinc sulphide mineral concentrating process was carried out at lab scale. The produced wastewater was treated by Ozone/BAC reactor at O3 feeding concentration of 16.7mg/L and HRT of 4h. The effluent analysis showed that TOC removal was 74.58%. This effluent was recycled to the lab scale lead-zinc sulphide mineral concentrating process and the recovery of lead was not affected. The results showed that by using Ozone/BAC technology, the lead-zinc sulphide mineral processing wastewater could be recycled.展开更多
1 Geological Background of Minerlization or Geologic Setting The northeast of Yunnan1 Pb-Zn-Ag-Ge polymetallic ore district is an important part of the southwestern margin of the Yangtze block Sichuan-Yunnan-Guizhou
In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on t...In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on these typical deposits, the mechanism of leaching-drawing mineralization of Mesozoic geothermal water and the related model are put forward in this paper in the light of the time interval between rock and formation ages as well as hydrogen, oxygen, sulphur and lead isotope geochemical characteristics. The major metallogenic process occurred in volcanic rock layers. The ore-forming fluids are geothermal water coming from meteoric water and circulating at shallow layers. This geothermal water leached and absorbed ore-forming materials from its country rocks during its flowing (such metallogenic elements as silver, lead-zinc and sulphur mainly came from consolidated volcanic rocks), leading to the formation of meso - epithermal silver deposits.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
A new technique for the flotation separation of lead zinc iron sulfide ores has been developed and applied to several mills in China. It is characterized by the matching of relationships among pulp pH, pulp potential,...A new technique for the flotation separation of lead zinc iron sulfide ores has been developed and applied to several mills in China. It is characterized by the matching of relationships among pulp pH, pulp potential, flotation collector inside grinding mill. The flotation separation of galena and sphalerite has been accomplished without the addition of any conventional depressant of sphalerite such as zinc sulphate. Lime is used as a regulator and stabilizer of pulp pH and potential. Diethyldithiocarbamate (DDTC), not xanthate, is determined as a collector for the selective flotation of galena from the Pb Zn Fe sulfide ores. The laboratory scale tests, the plant scale tests and the plant operations have all shown that the best separation results can be achieved at pH of 12.4~12.6, the pulp potential of 160~180 mV. The operation practice in the four plants has confirmed that compared with conventional flotation flowsheet, our new technology can greatly improve the flotation results, reduce the flotation time and the number of flotation cell, and increase the stability of operation and the adaptability to changes in ore properties. All these advantages have made this four plants more profitable.展开更多
The Xiaohongshilazi mineral deposit in Jilin Province,China,is located in the accretion zone in the northern margin of the North China Block. The deposit contains two types of ore bodies: layered Pb-Zn ore bodies in v...The Xiaohongshilazi mineral deposit in Jilin Province,China,is located in the accretion zone in the northern margin of the North China Block. The deposit contains two types of ore bodies: layered Pb-Zn ore bodies in volcanic rock and vein-hosted Pb-Zn ore bodies controlled by fractures. The vein Pb-Zn ore bodies are strictly controlled by tectonic fracture zones trending in S-N direction,which comprise sulfide veins or sulfidebearing quartz veins distributed along faults or structural fissures. The ores mainly appear mesh-vein and vein structures,and also show solid-solution separation and metasomatic textures. The metal minerals are mainly sphalerite,galena,and pyrite,etc. Wall-rock alteration includes mainly sericitization,chloritization,silicification and carbonatization,etc. Microscope observations and Raman spectroscopy analyses indicate that the oreforming fluid of the vein Pb-Zn ore bodies was mainly magmatic water with low temperature,low salinity,and a shallow depth of metallogenesis( ~ 1.5 km). Sulfur and lead isotope analyses indicate that the sulfide source is mainly formation sulfur or biogenic sulfur,which is similar to the sulfur source of hydrothermal deposit( negative( δ^(34) S values),while the main Pb source was the upper crust with some mantle input. This article argues that the vein Pb-Zn ore body of the Xiaohongshilazi deposit is a low-to medium-temperature hydrothermal vein type related to the formation of a shallow magma chamber.展开更多
Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track...Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.展开更多
The results of recent mineral exploration in the Yuele lead-zinc mining area of Daguan County, northeastern Yunnan province, showed that there are much early Paleozoic strata under thick late Paleozoic strata in north...The results of recent mineral exploration in the Yuele lead-zinc mining area of Daguan County, northeastern Yunnan province, showed that there are much early Paleozoic strata under thick late Paleozoic strata in northeastern Yunnan province, where developed some hidden salt structures (SSs), often with lead-zinc polymetallic mineralization varying degrees along the tension torsional fault (belts) or fracture (joint). The ore-bodies belong to the epigenetic hydrothermal filling vein-type deposit, and the prospecting potential is great. In this area, the superficial mineralization information displayed clear, but the deep mineralization is unknown, so the exploration work is restricted. The audio-megnetotelluric (AMT) surveying is an advantageous method to characterize the size, resistivity and skin depth of the polarizable mineral deposit concealed beneath thick overburden. This paper presents the surveying results using AMT method to evaluate the concealed lead-zinc mineralization in Yuele lead-zinc ore field, Daguancounty, NE Yunnan province, China. After comparing the interpretation result of AMT surveying data with the geological data and the drilling data, it is found that there is some distinct difference in resistivity and polarizable between ore-bodies hosted strata, upper strata and gypsum strata. The results show that AMT method is helpful to identify lead-zinc mineralization under this geological condition.展开更多
Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore d...Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.展开更多
Chemical(REE and major elements)and isotope(δ^(13)C,δ^(18)O)composition of carbonate manganese ores and manganese-bearing carbonates of the Usa deposit(Siberia,Russia)were studied.Received data on the composition of...Chemical(REE and major elements)and isotope(δ^(13)C,δ^(18)O)composition of carbonate manganese ores and manganese-bearing carbonates of the Usa deposit(Siberia,Russia)were studied.Received data on the composition of REE exhibit both the distinct negative(Ce/Ce*_(PAAS)<1)and positive(Ce/Ce*_(PAAS)>1)cerium anomalies and the positive Eu-anomaly(Eu/Eu*_(PAAS)>1).Negative Eu-anomalies are not observed.The contents of Mn,Fe,REE,and Ce-anomalies show a positive correlation with each other.Ce-anomalies and the amount of manganese and REE in relation to the carbon isotope composition(δ^(13)C)show a negative relationship and indicate that oxidized carbon of organic matter played an important role in the concentration of manganese and REE in manganese ores.The chemical and isotope composition of examined rocks indicates on secondary formation of Mnores.Two major phases and sources are distinguished in the ore-forming process characterized by diff erent chemical(REE and ore elements)and isotope composition:(i)highgrade manganese ores(with high contents of REE and light carbon isotope composition)and(ii)low-grade manganese ores(with low contents of REE and heavy carbon isotope composition).展开更多
Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low gra...Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.展开更多
In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and...In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019).展开更多
The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of l...The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca^(2+)and adsorption of Cu^(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S^(0) hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.展开更多
The Tieshanlong ore field is an important part of the Nanling Range,which is famous worldwide for its W-Sn mineralization.Notably,the mineralization age of the Tieshanlong ore field is not well constrained,and our fie...The Tieshanlong ore field is an important part of the Nanling Range,which is famous worldwide for its W-Sn mineralization.Notably,the mineralization age of the Tieshanlong ore field is not well constrained,and our field investigation reveals that granitic emplacement occurred at different stages.However,previous studies have not distinguished these multiple stages of magmatism.The Tieshanlong granite complex is closely related to the Huangsha quartz vein-type W-Sn deposit and Tongling skarn-type Cu-W-Sn deposit in this field.Through field investigations and isotopic age analyses,this work studies the relationship between multistage magmatic activity and mineralization in the Tieshanlong ore field.LA-ICP-MS zircon U-Pb isotope analyses revealed that the first-and second-staged granites formed at 154.2±0.6 Ma(MSDW=1.4)and 151.2±0.4 Ma(MSDW=1.5),with zirconε_(Hf)(t)values ranging from-13.1 to-10.5 and from-14.7 to-11.1,respectively.These data suggest that the Tieshanlong granite complex was derived from the partial melting of ancient crustal material.LA-ICP-MS U-Pb dating of wolframite and cassiterite reveals that W-Sn mineralization occurred at 160-150 Ma,which agrees well with the U-Pb dating results of the second-staged granite within analytical errors.The magmatic activity in this ore field can be divided into three stages:175-154 Ma,154-150 Ma and 150-145 Ma.The quartz vein-and skarn-type W-Sn mineralization is closely related to second-staged fine-grained twomica granite,and formed earlier than skarn-type Cu-mineralization.This study establishes a metallogenic model for the Tieshanlong ore field,and this model has important practical significance for identifying concealed W-Sn(-Cu)deposits around other granitic complexes in the Nanling Range.展开更多
The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit...The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.展开更多
The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization ...The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.展开更多
X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi...X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.展开更多
基金granted by the National Natural Science Foundation of China(grants No.41302067,41472067 and 41403043)the Fundamental Research Funds of Chinese Academy of Geological Sciences(grant No.YYWF201614 and 09 program of Institute of Geomechanics)IGCP/SIDA–600,and China Geological Survey(grant No.DD20160053)
文摘The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.
基金supported by Cooperated Project of Academy and College Yunnan province(2003CBALA02P023)
文摘The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxides in the sandstone and ignimbrite are changed into sulfides. The disproportionation reaction of sulfur in a solution is confirmed as 4S+3H2O=2S^2-+S2O3^2--+6H^+. The dynamics process is studied and the first-order reaction rate equation -1n(1-a)=ktt is obtained. The effects of the reactive products, stirring speed, dosage of sulfuration agent, value of pH and sulphidizing temperature on the sulfuration of oxide ore are investigated. The results indicate that the reactive apparent activation energy is 100.8 kJ/mol and the sulfuration ratio of lead-zinc oxide ore reaches 60% under the conditions of pH 5.9-7.5, the sulfuration temperature of 130 ℃, sulfuration time of 180 min and the stirring speed of 800 r/min.
文摘Lead-zinc sulphide ore contains lead sulphide (galena), and zinc sulphide (sphalerite). In the first flotation stage, galena is rendered hydrophobic with an organic collector such as xanthate, while sphalerite is kept from floating by depressants, and in the second flotation stage, activator was used to activated zinc flotation. Since the organic regent used are different in the two flotation stage, wastewater from the second zinc flotation stage can’t be directly recycled to the first lead flotation stage. Wastewater from flotation process for concentrating lead-zinc sulphide ore often containing organic compounds such as diethyldithiocarbamate(DDTC), xanthate, terpenic oil(2# oil) and thionocarbamate esters (Z-200), are environmentally hazardous. Their removal from contaminated water and the reuse of the water is one of the main challenges facing lead-zinc sulphide ore processing plants. In this study, synthetic wastewater containing DDTC, xanthate, 2# oil and Z-200 at concentrations ranging from 21 to 42 mg/L was fed into an Ozone/Biological activated carbon (BAC) reactor. Analyses of the effluent indicated a chemical oxygen demand (COD) removal over 86.21% and Total organic carbon (TOC) removal over 90.00% were achieved under Hydraulic retention time (HRT) of 4h and O3 feeding concentration of 33.3mg/L. The effluent was further recycled to the lab scale lead concentrating process and no significant difference was found in compare with fresh water. Furthermore, lead-zinc sulphide mineral concentrating process was carried out at lab scale. The produced wastewater was treated by Ozone/BAC reactor at O3 feeding concentration of 16.7mg/L and HRT of 4h. The effluent analysis showed that TOC removal was 74.58%. This effluent was recycled to the lab scale lead-zinc sulphide mineral concentrating process and the recovery of lead was not affected. The results showed that by using Ozone/BAC technology, the lead-zinc sulphide mineral processing wastewater could be recycled.
文摘1 Geological Background of Minerlization or Geologic Setting The northeast of Yunnan1 Pb-Zn-Ag-Ge polymetallic ore district is an important part of the southwestern margin of the Yangtze block Sichuan-Yunnan-Guizhou
文摘In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on these typical deposits, the mechanism of leaching-drawing mineralization of Mesozoic geothermal water and the related model are put forward in this paper in the light of the time interval between rock and formation ages as well as hydrogen, oxygen, sulphur and lead isotope geochemical characteristics. The major metallogenic process occurred in volcanic rock layers. The ore-forming fluids are geothermal water coming from meteoric water and circulating at shallow layers. This geothermal water leached and absorbed ore-forming materials from its country rocks during its flowing (such metallogenic elements as silver, lead-zinc and sulphur mainly came from consolidated volcanic rocks), leading to the formation of meso - epithermal silver deposits.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
文摘A new technique for the flotation separation of lead zinc iron sulfide ores has been developed and applied to several mills in China. It is characterized by the matching of relationships among pulp pH, pulp potential, flotation collector inside grinding mill. The flotation separation of galena and sphalerite has been accomplished without the addition of any conventional depressant of sphalerite such as zinc sulphate. Lime is used as a regulator and stabilizer of pulp pH and potential. Diethyldithiocarbamate (DDTC), not xanthate, is determined as a collector for the selective flotation of galena from the Pb Zn Fe sulfide ores. The laboratory scale tests, the plant scale tests and the plant operations have all shown that the best separation results can be achieved at pH of 12.4~12.6, the pulp potential of 160~180 mV. The operation practice in the four plants has confirmed that compared with conventional flotation flowsheet, our new technology can greatly improve the flotation results, reduce the flotation time and the number of flotation cell, and increase the stability of operation and the adaptability to changes in ore properties. All these advantages have made this four plants more profitable.
基金Supported by Project of Natural Science Foundation of Jilin Province(No.20170101084JC)
文摘The Xiaohongshilazi mineral deposit in Jilin Province,China,is located in the accretion zone in the northern margin of the North China Block. The deposit contains two types of ore bodies: layered Pb-Zn ore bodies in volcanic rock and vein-hosted Pb-Zn ore bodies controlled by fractures. The vein Pb-Zn ore bodies are strictly controlled by tectonic fracture zones trending in S-N direction,which comprise sulfide veins or sulfidebearing quartz veins distributed along faults or structural fissures. The ores mainly appear mesh-vein and vein structures,and also show solid-solution separation and metasomatic textures. The metal minerals are mainly sphalerite,galena,and pyrite,etc. Wall-rock alteration includes mainly sericitization,chloritization,silicification and carbonatization,etc. Microscope observations and Raman spectroscopy analyses indicate that the oreforming fluid of the vein Pb-Zn ore bodies was mainly magmatic water with low temperature,low salinity,and a shallow depth of metallogenesis( ~ 1.5 km). Sulfur and lead isotope analyses indicate that the sulfide source is mainly formation sulfur or biogenic sulfur,which is similar to the sulfur source of hydrothermal deposit( negative( δ^(34) S values),while the main Pb source was the upper crust with some mantle input. This article argues that the vein Pb-Zn ore body of the Xiaohongshilazi deposit is a low-to medium-temperature hydrothermal vein type related to the formation of a shallow magma chamber.
基金the Foundation of State Key Laboratory of Nuclear Resources and Environment(Grant Nos.NRE2021-01,2022NRE34)the National Natural Science Foundation of China(Grant No.42162013)+1 种基金the Third Xinjiang Scientific Expedition Program(Grant No.2022xjkk1301)the Fund of National Key Laboratory of Science and Technology on Remote Sensing Information and imagery Analysis,Beijing Research Institute of Uranium Geology(Grant No.6142A01210405).
文摘Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.
文摘The results of recent mineral exploration in the Yuele lead-zinc mining area of Daguan County, northeastern Yunnan province, showed that there are much early Paleozoic strata under thick late Paleozoic strata in northeastern Yunnan province, where developed some hidden salt structures (SSs), often with lead-zinc polymetallic mineralization varying degrees along the tension torsional fault (belts) or fracture (joint). The ore-bodies belong to the epigenetic hydrothermal filling vein-type deposit, and the prospecting potential is great. In this area, the superficial mineralization information displayed clear, but the deep mineralization is unknown, so the exploration work is restricted. The audio-megnetotelluric (AMT) surveying is an advantageous method to characterize the size, resistivity and skin depth of the polarizable mineral deposit concealed beneath thick overburden. This paper presents the surveying results using AMT method to evaluate the concealed lead-zinc mineralization in Yuele lead-zinc ore field, Daguancounty, NE Yunnan province, China. After comparing the interpretation result of AMT surveying data with the geological data and the drilling data, it is found that there is some distinct difference in resistivity and polarizable between ore-bodies hosted strata, upper strata and gypsum strata. The results show that AMT method is helpful to identify lead-zinc mineralization under this geological condition.
文摘Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.
基金accomplished in accordance with the Research Program of the Geological Institute of the Russian Academy of Sciences。
文摘Chemical(REE and major elements)and isotope(δ^(13)C,δ^(18)O)composition of carbonate manganese ores and manganese-bearing carbonates of the Usa deposit(Siberia,Russia)were studied.Received data on the composition of REE exhibit both the distinct negative(Ce/Ce*_(PAAS)<1)and positive(Ce/Ce*_(PAAS)>1)cerium anomalies and the positive Eu-anomaly(Eu/Eu*_(PAAS)>1).Negative Eu-anomalies are not observed.The contents of Mn,Fe,REE,and Ce-anomalies show a positive correlation with each other.Ce-anomalies and the amount of manganese and REE in relation to the carbon isotope composition(δ^(13)C)show a negative relationship and indicate that oxidized carbon of organic matter played an important role in the concentration of manganese and REE in manganese ores.The chemical and isotope composition of examined rocks indicates on secondary formation of Mnores.Two major phases and sources are distinguished in the ore-forming process characterized by diff erent chemical(REE and ore elements)and isotope composition:(i)highgrade manganese ores(with high contents of REE and light carbon isotope composition)and(ii)low-grade manganese ores(with low contents of REE and heavy carbon isotope composition).
基金This work was financially supported by the National Natural Science Foundation of China(No.51874018)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2022-07).
文摘Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.
文摘In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019).
基金financially supported from the National Natural Science Foundation of China(No.52164021)the Natural Science Foundation of Yunnan Province,China(No.2019FB078)。
文摘The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca^(2+)and adsorption of Cu^(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S^(0) hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.
基金supported by the Young Science and Technology Leader Training Plan Project of Jiangxi Bureau of Geology(Grant No.2024JXDZKJRC01)the Key Laboratory of Ionic Rare Earth Resources and Environment,Ministry of Natural Resources of the People's Republic of China(Grant No.2022IRERE101)+1 种基金the National Key R&D Program of China(Grant No.2020YFA0406400)the Jiangxi Geological Survey Project(Grant Nos.20210041 and 20242001)。
文摘The Tieshanlong ore field is an important part of the Nanling Range,which is famous worldwide for its W-Sn mineralization.Notably,the mineralization age of the Tieshanlong ore field is not well constrained,and our field investigation reveals that granitic emplacement occurred at different stages.However,previous studies have not distinguished these multiple stages of magmatism.The Tieshanlong granite complex is closely related to the Huangsha quartz vein-type W-Sn deposit and Tongling skarn-type Cu-W-Sn deposit in this field.Through field investigations and isotopic age analyses,this work studies the relationship between multistage magmatic activity and mineralization in the Tieshanlong ore field.LA-ICP-MS zircon U-Pb isotope analyses revealed that the first-and second-staged granites formed at 154.2±0.6 Ma(MSDW=1.4)and 151.2±0.4 Ma(MSDW=1.5),with zirconε_(Hf)(t)values ranging from-13.1 to-10.5 and from-14.7 to-11.1,respectively.These data suggest that the Tieshanlong granite complex was derived from the partial melting of ancient crustal material.LA-ICP-MS U-Pb dating of wolframite and cassiterite reveals that W-Sn mineralization occurred at 160-150 Ma,which agrees well with the U-Pb dating results of the second-staged granite within analytical errors.The magmatic activity in this ore field can be divided into three stages:175-154 Ma,154-150 Ma and 150-145 Ma.The quartz vein-and skarn-type W-Sn mineralization is closely related to second-staged fine-grained twomica granite,and formed earlier than skarn-type Cu-mineralization.This study establishes a metallogenic model for the Tieshanlong ore field,and this model has important practical significance for identifying concealed W-Sn(-Cu)deposits around other granitic complexes in the Nanling Range.
文摘The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.
基金funded by the “Laboratoire de Recherche Ressources, Matériaux et Ecosystémes”, University of Carthage 7021 Zarzouna, Bizerte, Tunisia
文摘The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.
基金supported by State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2022-16)China Postdoctoral Science Foundation (No.2021M700387)+1 种基金National Natural Science Foundation of China (No.G2021105015L)Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2904502)。
文摘X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.