期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
Direct measurement of the three-dimensional distribution of leaf area density and light conditions in a mature oak stand by the cube method
1
作者 Chiharu Migita Yukihiro Chiba Tanaka Kenzo 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1817-1827,共11页
Although the distributions of foliage and light play major roles in various forest functions,accurate,nondestructive measurement of these distributions is difficult due to the complexity of the canopy structure.To eva... Although the distributions of foliage and light play major roles in various forest functions,accurate,nondestructive measurement of these distributions is difficult due to the complexity of the canopy structure.To evaluate the foliage and light distributions directly and nondestructively in a mature oak stand,we used the cube method by dividing the forest canopy into small cubes(50 cm per side)and directly measured leaf area density(LAD,the total one-sided leaf area per unit volume,i.e.,cube)and relative irradiance(RI)within each cube.The distribution of LAD and of RI was highly heterogeneous,even at the same canopy height.This heterogeneity reflected the presence of foliage clusters associated with multiple forking branches.The relationship between cumulative LAD at the canopy surface and average RI followed the Beer-Lambert law.The mean light extinction coefficient(K)was 0.32.However,K was overestimated by more than double(0.80)when calculated based on the classical method using RI at the forest floor.This overestimation was caused by the lower RI due to light absorption by nonleaf plant parts below the canopy.Our findings on the complex foliage and light distributions in canopy layers should help improve the accuracy of RI and K measurements and thus more accurate predictions of environmental responses and forest functions. 展开更多
关键词 Beer-Lambert law Canopy structure Foliage cluster leaf area density leaf area index Relative light intensity
下载PDF
Comparative analysis of GF-1,HJ-1,and Landsat-8 data for estimating the leaf area index of winter wheat 被引量:16
2
作者 LI He CHEN Zhong-xin +4 位作者 JIANG Zhi-wei WU Wen-bin REN Jian-qiang LIU Bin Tuya Hasi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第2期266-285,共20页
Using simultaneously collected remote sensing data and field measurements, this study firstly assessed the consistency and applicability of China high-resolution earth observation system satellite 1 (GF-1) wide fiel... Using simultaneously collected remote sensing data and field measurements, this study firstly assessed the consistency and applicability of China high-resolution earth observation system satellite 1 (GF-1) wide field of view (WFV) camera, environment and disaster monitoring and forecasting satellite (H J-l) charge coupled device (CCD), and Landsat-8 opera- tional land imager (OLI) data for estimating the leaf area index (LAI) of winter wheat via reflectance and vegetation indices (VIs). The accuracies of these LAI estimates were then assessed through comparison with an empirical model and the PROSAIL radiative transfer model. The effects of radiation calibration, spectral response functions, and spatial resolution on discrepancies in the LAI estimates between the different sensors were also analyzed. The results yielded the following observations: (1) The correlation between reflectance from different sensors is relative good, with the adjusted coefficients of determination (R2) between 0.375 to 0.818. The differences in reflectance are ranging from 0.002 to 0.054. The correlation between VIs from different sensors is high with the R2 between 0.729 and 0.933. The differences in the VIs are ranging from 0.07 to 0.156. These results show the three sensors' images can all be used for cross calibration of the reflectance and VIs. (2) The four VIs from the three sensors are all demonstrated to be highly correlated with LAI (R2 between 0.703 and 0.849). The linear models associated with the 2-band enhanced vegetation index (EVI2), which feature the highest R2 (higher than 0.746) and the lowest root mean square errors (RMSE) (less than 0.21), were selected to estimate the winter wheat LAI. The accuracy of the estimated LAI from Landsat-8 was the highest, with the relative errors (RE) of 2.18% and an RMSE of 0.13, while the H J-1 was the lowest, with the RE of 2.43% and the RMSE of 0.15. (3) The inversion errors in the different sensors' LAI estimates using the PROSAIL model are small. The accuracy of the GF-1 is the highest with the RE of 3.44%, and the RMSE of 0.22, whereas that of the H J-1 is the lowest with the RE of 4.95%, and the RMSE of 0.26. (4) The effects of the spectral response function and radiation calibration for the different sensors are small and can be ignored, but the effects of spatial resolution are significant and must be taken into consideration in practical applications. 展开更多
关键词 GF-1 WFV H J-1 CCD Landsat-80LI leaf area index PROSAIL vegetation indices
下载PDF
New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice 被引量:20
3
作者 WANG FU min HUANG Jing feng +1 位作者 TANG Yan lin WANG Xiu zhen 《Rice science》 SCIE 2007年第3期195-203,共9页
Leaf area index (LAI) is an important characteristic of land surface vegetation system, and is also a key parameter for the models of global water balancing and carbon circulation. By using the reflectance values of... Leaf area index (LAI) is an important characteristic of land surface vegetation system, and is also a key parameter for the models of global water balancing and carbon circulation. By using the reflectance values of Landsat-5 blue, green and red channels simulated from rice reflectance spectrum, the sensitivities of the bands to LAI were analyzed, and the response and capability to estimate LAI of various NDVIs (normalized difference vegetation indices), which were established by substituting the red band of general NDVI with all possible combinations of red, green and blue bands, were assessed. Finally, the conclusion was tested by rice data at different conditions. The sensitivities of red, green and blue bands to LAI were different under various conditions. When LAI was less than 3, red and blue bands were more sensitive to LAI. Though green band in the circumstances was less sensitive to LAI than red and blue bands, it was sensitive to LAI in a wider range. When the vegetation indices were constituted by all kinds of combinations of red, green and blue bands, the premise for making the sensitivity of these vegetation indices to LAI be meaningful was that the value of one of the combinations was greater than 0.024, i.e. visible reflectance (VIS)〉0.024. Otherwise, the vegetation indices would be saturated, resulting in lower estimation accuracy of LAI. Comparison on the capabilities of the vegetation indices derived from all kinds of combinations of red, green and blue bands to LAI estimation showed that GNDVI (Green NDVI) and GBNDVI (Green-Blue NDVI) had the best relations with LAI. The capabilities of GNDVI and GBNDVI to LAI estimation were tested under different circumstances, and the same result was acquired. It suggested that GNDVI and GBNDVI performed better to predict LAI than the conventional NDVI. 展开更多
关键词 vegetation index RICE leaf area index reflectance spectrum remote sensing
下载PDF
Mapping Spatial and Temporal Variations of Leaf Area Index for Winter Wheat in North China 被引量:13
4
作者 YANG Peng WU Wen-bin +3 位作者 TANG Hua-jun ZHOU Qing-bo ZOU Jin-qiu ZHANG Li 《Agricultural Sciences in China》 CAS CSCD 2007年第12期1437-1443,共7页
Leaf area index (LAI) is an important parameter in a number of models related to ecosystem functioning, carbon budgets, climate, hydrology, and crop growth simulation. Mapping and monitoring the spatial and temporal... Leaf area index (LAI) is an important parameter in a number of models related to ecosystem functioning, carbon budgets, climate, hydrology, and crop growth simulation. Mapping and monitoring the spatial and temporal variations of LAI are necessary for understanding crop growth and development at regional level. In this study, the relationships between LAI of winter wheat and Landsat TM spectral vegetation indices (SVIs) were analyzed by using the curve estimation procedure in North China Plain. The series of LAI maps retrieved by the best regression model were used to assess the spatial and temporal variations of winter wheat LAI. The results indicated that the general relationships between LAI and SVIs were curvilinear, and that the exponential model gave a better fit than the linear model or other nonlinear models for most SVIs. The best regression model was constructed using an exponential model between surface-reflectance-derived difference vegetation index (DVI) and LAI, with the adjusted R2 (0.82) and the RMSE (0.77). The TM LAI maps retrieved from DVILAI model showed the significant spatial and temporal variations. The mean TM LAI value (30 m) for winter wheat of the study area increased from 1.29 (March 7, 2004) to 3.43 (April 8, 2004), with standard deviations of 0.22 and 1.17, respectively. In conclusion, spectral vegetation indices from multi-temporal Landsat TM images can be used to produce fine-resolution LAI maps for winter wheat in North China Plain. 展开更多
关键词 leaf area index (LAI) winter wheat spectral vegetation index (SVI) Landsat TM North China Plain
下载PDF
Simulation of leaf area index and biomass at landscape scale 被引量:7
5
作者 ZHANGNa YUGuirui +1 位作者 YUZhenliang ZHAOShidong 《Journal of Geographical Sciences》 SCIE CSCD 2003年第2期139-152,共14页
The method for simulating the temporal and spatial distribution patterns of leaf area index (LAI) and biomass at landscape scale using remote sensing images and surface data was discussed in this paper. The procedure... The method for simulating the temporal and spatial distribution patterns of leaf area index (LAI) and biomass at landscape scale using remote sensing images and surface data was discussed in this paper. The procedure was: (1) annual maximum normalized difference vegetation index (NDVI) over the landscape was calculated from TM images; (2) the relationship model between NDVI and LAI was built and annual maximum LAI over the landscape was simulated; (3) the relationship models between LAI and biomass were built and annual branch, stem, root and maximum leaf biomass over the landscape were simulated; (4) spatial distribution patterns of leaf biomass and LAI in different periods all the year round were obtained. The simulation was based on spatial analysis module GRID in ArcInfo software. The method is also a kind of scaling method from patch scale to landscape scale. A case study of Changbai Mountain Nature Reserve was dissertated. Analysis and primary validation were carried out to the simulated LAI and biomass for the major vegetation types in the Changbai Mountain in 1995. 展开更多
关键词 landscape scale leaf area index BIOMASS remote sensing field measurement CLC number:Q948.2 TP79
下载PDF
Assimilation of temporal-spatial leaf area index into the CERES-Wheat model with ensemble Kalman filter and uncertainty assessment for improving winter wheat yield estimation 被引量:5
6
作者 LI He JIANG Zhi-wei +3 位作者 CHEN Zhong-xin REN Jian-qiang LIU Bin Hasituya 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第10期2283-2299,共17页
To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) v... To accurately estimate winter wheat yields and analyze the uncertainty in crop model data assimilations, winter wheat yield estimates were obtained by assimilating measured or remotely sensed leaf area index (LAI) values. The performances of the calibrated crop environment resource synthesis for wheat (CERES-Wheat) model for two different assimilation scenarios were compared by employing ensemble Kalman filter (EnKF)-based strategies. The uncertainty factors of the crop model data assimilation was analyzed by considering the observation errors, assimilation stages and temporal-spatial scales. Overalll the results indicated a better yield estimate performance when the EnKF-based strategy was used to comprehen- sively consider several factors in the initial conditions and observations. When using this strategy, an adjusted coefficients of determination (R2) of 0.84, a root mean square error (RMSE) of 323 kg ha-1, and a relative errors (RE) of 4.15% were obtained at the field plot scale and an R2 of 0.81, an RMSE of 362 kg ha-1, and an RE of 4.52% were obtained at the pixel scale of 30 mx30 m. With increasing observation errors, the accuracy of the yield estimates obviously decreased, but an acceptable estimate was observed when the observation errors were within 20%. Winter wheat yield estimates could be improved significantly by assimilating observations from the middle to the end of the crop growing seasons. With decreasing assimilation frequency and pixel resolution, the accuracy of the crop yield estimates decreased; however, the computation time decreased. It is important to consider reasonable temporal-spatial scales and assimilation stages to obtain tradeoffs between accuracy and computation time, especially in operational systems used for regional crop yield estimates. 展开更多
关键词 winter wheat yield estimates crop model data assimilation ensemble Kalman filter UNCERTAINTY leaf area index
下载PDF
Leaf area index retrieval based on canopy reflectance and vegetation index in eastern China 被引量:5
7
作者 JIANGJianjun CHENSuozhong +3 位作者 CAOShunxian WUHongan ZHANGLi ZHANGHailong 《Journal of Geographical Sciences》 SCIE CSCD 2005年第2期247-254,共8页
The aim of this paper is to investigate the feasibility of using Landsat TM data to retrieve leaf area index (LAI). To get a LAI retrieval model based ground reflectance and vegetation index, detailed field data were ... The aim of this paper is to investigate the feasibility of using Landsat TM data to retrieve leaf area index (LAI). To get a LAI retrieval model based ground reflectance and vegetation index, detailed field data were collected in the study area of eastern China, dominated by bamboo, tea plant and greengage. Plant canopy reflectance of Landsat TM wavelength bands has been inversed using software of 6S. LAI is an important ecological parameter. In this paper, atmospheric corrected Landsat TM imagery was utilized to calculate different vegetation indices (VI), such as simple ratio vegetation index (SR), shortwave infrared modified simple ratio (MSR), and normalized difference vegetation index (NDVI). Data of 53 samples of LAI were measured by LAI-2000 (LI-COR) in the study area. LAI was modeled based on different reflectances of bands and different vegetation indices from Landsat TM and LAI samples data. There are certainly correlations between LAI and the reflectance of TM3, TM4, TM5 and TM7. The best model through analyzing the results is LAI = 1.2097*MSR + 0.4741 using the method of regression analysis. The result shows that the correlation coefficient R2 is 0.5157, and average accuracy is 85.75%. However, whether the model of this paper is suitable for application in subtropics needs to be verified in the future. 展开更多
关键词 Landsat TM leaf area Index (LAI) vegetation indices retrieval model Taihu Lake
下载PDF
Comprehensive Study on the Influence of Evapotranspiration and Albedo on Surface Temperature Related to Changes in the Leaf Area Index 被引量:4
8
作者 ZHU Jiawen ZENG Xiaodong 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第7期935-942,共8页
Many studies have investigated the influence of evapotranspiration and albedo and emphasize their separate effects but ignore their interactive influences by changing vegetation status in large amplitudes. This paper ... Many studies have investigated the influence of evapotranspiration and albedo and emphasize their separate effects but ignore their interactive influences by changing vegetation status in large amplitudes. This paper focuses on the comprehensive influence of evapotranspiration and albedo on surface temperature by changing the leaf area index (LAD between 30^-90~N. Two LAI datasets with seasonally different amplitudes of vegetation change between 30^-90~N were used in the simulations. Seasonal differences between the results of the simulations are compared, and the major findings are as follows. (1) The interactive effects of evapotranspiration and albedo on surface temperature were different over different regions during three seasons [March-April-May (MAM), June-July-August (JJA), and September-October-November (SON)], i.e., they were always the same over the southeastern United States during these three seasons but were opposite over most regions between 30°-90°N during JJA. (2) Either evapotranspiration or albedo tended to be dominant over different areas and during different seasons. For example, evapotranspiration dominated almost all regions between 30^-90~N during JJA, whereas albedo played a dominant role over northwestern Eurasia during MAM and over central Eurasia during SON. (3) The response of evapotranspiration and albedo to an increase in LAI with different ranges showed different paces and signals. With relatively small amplitudes of increased LAI, the rate of the relative increase in evapotranspiration was quick, and positive changes happened in albedo. But both relative changes in evapotranspiration and albedo tended to be gentle, and the ratio of negative changes of albedo increased with relatively large increased amplitudes of LAI. 展开更多
关键词 surface temperature EVAPOTRANSPIRATION ALBEDO leaf area index comprehensive influence
下载PDF
A NEW QUANTITATIVE WAY FOR DETERMINING LEAF AREA INDEXAND NET PRIMARY PRODUCTIVITY IN REGIONAL SCALE 被引量:7
9
作者 Zhang Renhua(Institute of Geography, CAS, Bejing 100101, P.R. China)Andres Kuusk(Estorua Observatory, Tatu, Estorua)Chen Gang(Ground Station of Satellite Remote Sensing, CAS, Behing 100086, P.R. China)Alan Strahler Li Xiaonen(Remote Sensing Cater, Boston 《Journal of Geographical Sciences》 SCIE CSCD 1996年第4期1-17,共17页
An inversion of bidirectional reflection distribution fiJnedon (BRDF) wastested using NK Model and NOAA AVHRR datu. The test involVed sensitiveanalysis, optimum inversion selecting, ground simulated expenment, calibra... An inversion of bidirectional reflection distribution fiJnedon (BRDF) wastested using NK Model and NOAA AVHRR datu. The test involVed sensitiveanalysis, optimum inversion selecting, ground simulated expenment, calibrahngmeasuremed with satellite and computer image processmg. Results of comparisonwith NDVI indicatal that inversion of BRDF will have brigh developing prospect inthe next decade. 展开更多
关键词 leaf area index transmission coefficient inversion sensitivity bidirectional refectance distribution function
下载PDF
Performance and Analysis of a Model for Describing Layered Leaf Area Index of Rice 被引量:4
10
作者 LU Chuan-gen YAO Ke-min HU Ning 《Agricultural Sciences in China》 CAS CSCD 2011年第3期351-362,共12页
Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theo... Layered leaf area index (LAIk) is one of the major determinants for rice canopy. The objective of this study is to attain rice LAI k using morphological traits especially leaf traits that affected plant type. A theoretical model based on rice geometrical structure was established to describe LAI k of rice with leaf length (Li), width (Wi), angle (Ai), and space (Si), and plant pole height (H) at booting and heading stages. In correlation with traditional manual measurement, the model was performed by high R2-values (0.95-0.89, n=24) for four rice hybrids (Liangyoupeijiu, Liangyou E32, Liangyou Y06, and Shanyou 63) with various plant types and four densities (3 750, 2 812, 1 875, and 1 125 plants per 100 m2) of a particular hybrid (Liangyoupeijiu). The analysis of leaf length, width, angle, and space on LAI k for two hybrids (Liangyoupeijiu and Shanyou 63) showed that leaves length and space exhibited greater effects on the change of rice LAI k . The radiation intensity showed a significantly negative exponential relation to the accumulation of LAI k , which agreed to the coefficient of light extinction (K). Our results suggest that plant type regulates radiation distribution through changing LAI k . The present model would be helpful to acquire leaf distribution and judge canopy structure of rice field by computer system after a simple and less-invasive measurement of leaf length, width, angle (by photo), and space at field with non-dilapidation of plants. 展开更多
关键词 canopy structure layered leaf area index (LAI k MODEL plant type RICE
下载PDF
Artificial neural network models predicting the leaf area index:a case study in pure even-aged Crimean pine forests from Turkey 被引量:4
11
作者 ilker Ercanli Alkan Gunlu +1 位作者 Muammer Senyurt Sedat Keles 《Forest Ecosystems》 SCIE CSCD 2018年第4期400-411,共12页
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic... Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands. 展开更多
关键词 leaf area index Multivariate linear regression model Artificial neural network modeling Crimean pine Stand parameters
下载PDF
Basal internode elongation of rice as affected by light intensity and leaf area 被引量:4
12
作者 Xuhua Zhong Kaiming Liang +5 位作者 Bilin Peng Ka Tian Xiaojuan Li Nongrong Huang Yanzhuo Liu Junfeng Pan 《The Crop Journal》 SCIE CAS CSCD 2020年第1期62-70,共9页
Short basal internodes are important for lodging resistance of rice(Oryza sativa L.).Several canopy indices affect the elongation of basal internodes,but uncertainty as to the key factors determining elongation of bas... Short basal internodes are important for lodging resistance of rice(Oryza sativa L.).Several canopy indices affect the elongation of basal internodes,but uncertainty as to the key factors determining elongation of basal internodes persists.The objectives of this study were(1)to identify key factors affecting the elongation of basal internodes and(2)to establish a quantitative relationship between basal internode length and canopy indices.An inbred rice cultivar,Yinjingruanzhan,was grown in two split-plot field experiments with three N rates(0,75,and 150 kg N ha−1 in early season and 0,90,and 180 kg N ha−1 in late season)as main plots,three seedling densities(16.7,75.0,and 187.5 seedlings m−2)as subplots,and three replications in the 2015 early and late seasons in Guangzhou,China.Light intensity at base of canopy(Lb),light quality as determined from red/far-red light ratio(R/FR),light transmission ratio(LTR),leaf area index(LAI),leaf N concentration(NLV)and final length of second internode(counted from soil surface upward)(FIL)were recorded.Higher N rate and seedling density resulted in significantly longer FIL.FIL was negatively correlated with Lb,LTR,and R/FR(P<0.01)and positively correlated with LAI(P<0.01),but not correlated with NLV(P>0.05).Stepwise linear regression analysis showed that FIL was strongly associated with Lb and LAI(R2=0.82).Heavy N application to pot-grown rice at the beginning of first internode elongation did not change FIL.We conclude that FIL is determined mainly by Lb and LAI at jointing stage.NLV has no direct effect on the elongation of basal internodes.N application indirectly affects FIL by changing LAI and light conditions in the rice canopy.Reducing LAI and improving canopy light transmission at jointing stage can shorten the basal internodes and increase the lodging resistance of rice. 展开更多
关键词 Internode elongation leaf area index Light intensity Light quality R/FR Light transmission ratio leaf N concentration
下载PDF
DISTRIBUTION PATTERNS OF LEAF AREA INDEX FOR MAJOR CONIFEROUS FOREST TYPES IN CHINA 被引量:4
13
作者 Luo Tianxiang Li Wenhua Zhao Shidong Commission for Integrated Survey of Natural Resources, CAS, Beijing 100101 The People’s Republic of China 《Journal of Geographical Sciences》 SCIE CSCD 1997年第4期61-73,共13页
Leaf area index (LAI) of natural vegetation is recognized as the most important variable for measuring vegetation structure over large areas, and for relating it to energy and mass exchange, which has been successfull... Leaf area index (LAI) of natural vegetation is recognized as the most important variable for measuring vegetation structure over large areas, and for relating it to energy and mass exchange, which has been successfully estimated from satellite resolution sensors. In this paper, according to the statistical analysis based on a lot of forest plots, the mathematical models of LAI distribution patterns in the hydro thermal spaces for five coniferous forest types in China were established. For the cold temperate larch forests growing in the dry and cold climate, their LAI increases with the increasing of warm index and precipitation in the way of hyperbolic quadratic surface. For the cold temperate spruce fir forests and temperate Pinus tabulaeformis forests, their LAI is negatively related to the annual mean air temperature in the way of the natural exponential curve, in order to adapt to the water oppressed environments. For the subtropical Pinus massoniana forests and Cunninghamia lanceolata forests growing in the warm and moist climate, their LAI is related to the annual mean air temperature in the way of the parabolic quadratic curve. 展开更多
关键词 leaf area index hydro thermal space distribution pattern.
下载PDF
Estimating the crop leaf area index using hyperspectral remote sensing 被引量:18
14
作者 LIU Ke ZHOU Qing-bo +2 位作者 WU Wen-bin XIA Tian TANG Hua-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第2期475-491,共17页
The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop cano... The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies.During the last two decades,hyperspectral remote sensing has been employed increasingly for crop LAI estimation,which requires unique technical procedures compared with conventional multispectral data,such as denoising and dimension reduction.Thus,we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques.First,we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation.Second,we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types:approaches based on statistical models,physical models(i.e.,canopy reflectance models),and hybrid inversions.We summarize and evaluate the theoretical basis and different methods employed by these approaches(e.g.,the characteristic parameters of LAI,regression methods for constructing statistical predictive models,commonly applied physical models,and inversion strategies for physical models).Thus,numerous models and inversion strategies are organized in a clear conceptual framework.Moreover,we highlight the technical difficulties that may hinder crop LAI estimation,such as the "curse of dimensionality" and the ill-posed problem.Finally,we discuss the prospects for future research based on the previous studies described in this review. 展开更多
关键词 hyperspectral inversion leaf area index LAI retrieval
下载PDF
Leaf area index based nitrogen diagnosis in irrigated lowland rice 被引量:2
15
作者 LIU Xiao-jun CAO Qiang +5 位作者 YUAN Zhao-feng LIU Xia WANG Xiao-ling TIAN Yong-chao CAO Wei-xing ZHU Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第1期111-121,共11页
Leaf area index (LAI) is used for crop growth monitoring in agronomic research, and is promising to diagnose the nitrogen (N) status of crops. This study was conducted to develop appropriate LAI-based N diagnostic... Leaf area index (LAI) is used for crop growth monitoring in agronomic research, and is promising to diagnose the nitrogen (N) status of crops. This study was conducted to develop appropriate LAI-based N diagnostic models in irrigated lowland rice. Four field experiments were carried out in Jiangsu Province of East China from 2009 to 2014. Different N application rates and plant densities were used to generate contrasting conditions of N availability or population densities in rice. LAI was determined by LI-3000, and estimated indirectly by LAI-2000 during vegetative growth period. Group and individual plant characters (e.g., tiller number (TN) and plant height (H)) were investigated simultaneously. Two N indicators of plant N accumulation (NA) and N nutrition index (NNI) were measured as well. A calibration equation (LAI=1.7787LAI2o00-0.8816, R2=0.870") was developed for LAI-2000. The linear regression analysis showed a significant relationship between NA and actual LAI (R2=0.863^**). For the NNI, the relative LAI (R2=0.808-) was a relatively unbiased variable in the regression than the LAI (R^2=0.33^**). The results were used to formulate two LAI-based N diagnostic models for irrigated lowland rice (NA=29.778LAI-5.9397; NNI=0.7705RLAI+0.2764). Finally, a simple LAI deterministic model was developed to estimate the actual LAI using the characters of TN and H (LAI=-0.3375(THxHx0.01)2+3.665(TH×H×0.01)-1.8249, R2=0.875**). With these models, the N status of rice can be diagnosed conveniently in the field. 展开更多
关键词 leaf area index RICE LAI-2000 nitrogen diagnosis plant characters
下载PDF
Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013 被引量:2
16
作者 Junhua YANG Zhenming JI +4 位作者 Deliang CHEN Shichang KANG Congshen FU Keqin DUAN Miaogen SHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第6期628-644,共17页
The application of satellite radiance assimilation can improve the simulation of precipitation by numerical weather prediction models. However, substantial quantities of satellite data, especially those derived from l... The application of satellite radiance assimilation can improve the simulation of precipitation by numerical weather prediction models. However, substantial quantities of satellite data, especially those derived from low-level(surface-sensitive)channels, are rejected for use because of the difficulty in realistically modeling land surface emissivity and energy budgets.Here, we used an improved land use and leaf area index(LAI) dataset in the WRF-3 DVAR assimilation system to explore the benefit of using improved quality of land surface information to improve rainfall simulation for the Shule River Basin in the northeastern Tibetan Plateau as a case study. The results for July 2013 show that, for low-level channels(e.g., channel 3),the underestimation of brightness temperature in the original simulation was largely removed by more realistic land surface information. In addition, more satellite data could be utilized in the assimilation because the realistic land use and LAI data allowed more satellite radiance data to pass the deviation test and get used by the assimilation, which resulted in improved initial driving fields and better simulation in terms of temperature, relative humidity, vertical convection, and cumulative precipitation. 展开更多
关键词 WRF-3DVAR land use leaf area index radiance assimilation rainfall simulation
下载PDF
Evaluating the impact of sampling schemes on leaf area index measurements from digital hemispherical photography in Larix principis-rupprechtii forest plots
17
作者 Jie Zou Wei Hou +5 位作者 Ling Chen Qianfeng Wang Peihong Zhong Yong Zuo Shezhou Luo Peng Leng 《Forest Ecosystems》 SCIE CSCD 2020年第4期686-703,共18页
Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest ... Background:Digital hemispherical photography(DHP)is widely used to estimate the leaf area index(LAI)of forest plots due to its advantages of high efficiency and low cost.A crucial step in the LAI estimation of forest plots via DHP is choosing a sampling scheme.However,various sampling schemes involving DHP have been used for the LAI estimation of forest plots.To date,the impact of sampling schemes on LAI estimation from DHP has not been comprehensively investigated.Methods:In this study,13 commonly used sampling schemes which belong to five sampling types(i.e.dispersed,square,cross,transect and circle)were adopted in the LAI estimation of five Larix principis-rupprechtii plots(25m×25 m).An additional sampling scheme(with a sample size of 89)was generated on the basis of all the sample points of the 13 sampling schemes.Three typical inversion models and four canopy element clumping index(Ωe)algorithms were involved in the LAI estimation.The impacts of the sampling schemes on four variables,including gap fraction,Ωe,effective plant area index(PAIe)and LAI estimation from DHP were analysed.The LAI estimates obtained with different sampling schemes were then compared with those obtained from litter collection measurements.Results:Large differences were observed for all four variable estimates(i.e.gap fraction,Ωe,PAIe and LAI)under different sampling schemes.The differences in impact of sampling schemes on LAI estimation were not obvious for the three inversion models,if the fourΩe algorithms,except for the traditional gap-size analysis algorithm were adopted in the estimation.The accuracy of LAI estimation was not always improved with an increase in sample size.Moreover,results indicated that with the appropriate inversion model,Ωe algorithm and sampling scheme,the maximum estimation error of DHP-estimated LAI at elementary sampling unit can be less than 20%,which is required by the global climate observing system,except in forest plots with extremely large LAI values(~>6.0).However,obtaining an LAI from DHP with an estimation error lower than 5%is impossible regardless of which combination of inversion model,Ωe algorithm and sampling scheme is used.Conclusion:The LAI estimation of L.principis-rupprechtii forests from DHP was largely affected by the sampling schemes adopted in the estimation.Thus,the sampling scheme should be seriously considered in the LAI estimation.One square and two transect sampling schemes(with sample sizes ranging from 3 to 9)were recommended to be used to estimate the LAI of L.principis-rupprechtii forests with the smallest mean relative error(MRE).By contrast,three cross and one dispersed sampling schemes were identified to provide LAI estimates with relatively large MREs. 展开更多
关键词 Sampling scheme Elementary sampling unit Clumping index leaf area index Digital hemispherical photography FOREST LARIX
下载PDF
Visual rating and the use of image analysis for assessing canopy density in a pecan provenance collection during leaf fall
18
作者 Cristina Pisani Clive H.Bock Jennifer Randall 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1843-1854,共12页
A collection representing the native range of pecan was planted at the US DA-ARS Southeastern Fruit and Tree Nut Research Station,Byron,GA.The collection(867 trees)is a valuable genetic resource for characterizing imp... A collection representing the native range of pecan was planted at the US DA-ARS Southeastern Fruit and Tree Nut Research Station,Byron,GA.The collection(867 trees)is a valuable genetic resource for characterizing important horticultural traits.Canopy density during leaf fall is important as the seasonal canopy dynamics provides insights to environmental cues and breeding potential of germplasm.The ability of visual raters to estimate canopy density on a subset of the provenance collection(76 trees)as an indicator of leaf shed during autumn along with image analysis values was explored.Mean canopy density using the image analysis software was less compared to visual estimates(11.9%vs 18.4%,respectively).At higher canopy densities,the raters overestimated foliage density,but overall agreement between raters and measured values was good(ρc=0.849 to 0.915),and inter-rater reliability was high(R^(2)=0.910 to 0.953).The provenance from Missouri(MOL),the northernmost provenance,had the lowest canopy density in November,and results show that the higher the latitude of the provenance,the lower the canopy density.Based on regression,the source provenance latitude explained 0.609 of the variation using image analysis,and0.551 to 0.640 when based on the rater estimates of canopy density.Visual assessment of pecan canopy density due to late season leaf fall for comparing pecan genotypes provides accurate and reliable estimates and could be used in future studies of the whole provenance collection. 展开更多
关键词 Carya illinoinensis Accuracy Reliability CANOPY Foliage density leaf area density leaf area index
下载PDF
Growth and Leaf Area Index Simulation in Maize(Zea mays L.)under Small-Scale Farm Conditions in a Sub-Saharan African Region
19
作者 Jean-Claude Lukombo Lukeba Roger Kizungu Vumilia +2 位作者 Kabwe C.K.Nkongolo Moise Lufuluabo Mwabila Mbungu Tsumbu 《American Journal of Plant Sciences》 2013年第3期575-583,共9页
Different crop models including MAIZE Ceres, STICS and other approaches have been used to simulate leaf area index (LAI) in maize (Zea mays L.). These modeling tools require genotype-specific calibration procedures. S... Different crop models including MAIZE Ceres, STICS and other approaches have been used to simulate leaf area index (LAI) in maize (Zea mays L.). These modeling tools require genotype-specific calibration procedures. Studies on modeling LAI dynamics under optimal growth conditions with yields close to the yield potential have remained scarce. In the present study, logistic and exponential approaches have been developed and evaluated for the simulation of LAI in maize in a savannah region of the DR-Congo. Data for the development and the evaluation of the model were collected manually by non-destructive method from small farmers’ field. The rate of expansion of the leaf surface and the rate of change of leaf senescence were also simulated. There were measurable variations among sites and varieties for the simulated height of maize plants. At all sites, the varieties with short plants were associated with expected superior performance based on simulation data. In general, the model underestimates the LAI based on observed values. LAI values for the genetically improved maize varieties (Salongo 2, MUS and AK) were greater than those of the unimproved local variety (Local). There were significant differences for K, b, Ti, LAI, Tf, and parameters among models and varieties. In all sites and for all varieties, the growth rate (b) was higher, while the rate of senescence (a) was lower compared to STICS estimates. 展开更多
关键词 leaf area Index and Senescence MAIZE Simulation Models DR-Congo
下载PDF
Effects of leaf N concentration and leaf area index on determining rice tillering
20
《Chinese Rice Research Newsletter》 1999年第4期8-9,共2页
Relative tillering rate(RTR)increased linear-ly with the increasing of leaf N concentration(NLV)has been already reported.To testwhether this relationship could be used toquantitatively explain the difference in tille... Relative tillering rate(RTR)increased linear-ly with the increasing of leaf N concentration(NLV)has been already reported.To testwhether this relationship could be used toquantitatively explain the difference in tilleringamong a wide range of N application,field ex- periments were conducted at the IRRI farm,Los Banos,Laguna,the Philippines.Two in- dica cultivars,IR 72 and IR68284H wereused.For each cultivar,12 treatments includ- ing 4 N levels(0,60,120,and 180kgN·ha)and 3 transplanting spacing(30×20,20×20,and 10×20cm)were arranged in a ran-domized split-plot design with 4 replications.The N treatments were designated as mainplots and spacings as subplots.Fourteen-day-old seedlings were transplanted with 3seedlings per hill.The subplot area was 20m~2.Nitrogen fertilizer was applied as basal,atmidtillering,and at panicle initiation in threeequal splits.P,K,and Zn were applied asbasal at normal dosage.The field was flooded.Plant samples were taken every 7-14 d from 14d after transplanting to flower 展开更多
关键词 area IR Effects of leaf N concentration and leaf area index on determining rice tillering
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部