期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Estimating the crop leaf area index using hyperspectral remote sensing 被引量:18
1
作者 LIU Ke ZHOU Qing-bo +2 位作者 WU Wen-bin XIA Tian TANG Hua-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第2期475-491,共17页
The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop cano... The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies.During the last two decades,hyperspectral remote sensing has been employed increasingly for crop LAI estimation,which requires unique technical procedures compared with conventional multispectral data,such as denoising and dimension reduction.Thus,we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques.First,we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation.Second,we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types:approaches based on statistical models,physical models(i.e.,canopy reflectance models),and hybrid inversions.We summarize and evaluate the theoretical basis and different methods employed by these approaches(e.g.,the characteristic parameters of LAI,regression methods for constructing statistical predictive models,commonly applied physical models,and inversion strategies for physical models).Thus,numerous models and inversion strategies are organized in a clear conceptual framework.Moreover,we highlight the technical difficulties that may hinder crop LAI estimation,such as the "curse of dimensionality" and the ill-posed problem.Finally,we discuss the prospects for future research based on the previous studies described in this review. 展开更多
关键词 hyperspectral inversion leaf area index LAI retrieval
下载PDF
The spatial scaling effect of the discrete-canopy effective leaf area index retrieved by remote sensing 被引量:5
2
作者 FAN WenJie GAI YingYing +1 位作者 XU XiRu YAN BinYan 《Science China Earth Sciences》 SCIE EI CAS 2013年第9期1548-1554,共7页
The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scali... The leaf area index(LAI) is a critical biophysical variable that describes canopy geometric structures and growth conditions.It is also an important input parameter for climate,energy and carbon cycle models.The scaling effect of the LAI has always been of concern.Considering the effects of the clumping indices on the BRDF models of discrete canopies,an effective LAI is defined.The effective LAI has the same function of describing the leaf density as does the traditional LAI.Therefore,our study was based on the effective LAI.The spatial scaling effect of discrete canopies significantly differed from that of continuous canopies.Based on the directional second-derivative method of effective LAI retrieval,the mechanism responsible for the spatial scaling effect of the discrete-canopy LAI is discussed and a scaling transformation formula for the effective LAI is suggested in this paper.Theoretical analysis shows that the mean values of effective LAIs retrieved from high-resolution pixels were always equal to or larger than the effective LAIs retrieved from corresponding coarse-resolution pixels.Both the conclusions and the scaling transformation formula were validated with airborne hyperspectral remote sensing imagery obtained in Huailai County,Zhangjiakou,Hebei Province,China.The scaling transformation formula agreed well with the effective LAI retrieved from hyperspectral remote sensing imagery. 展开更多
关键词 The spatial scaling effect of the discrete-canopy effective leaf area index retrieved by remote sensing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部