期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intraspecific leaf morphological variation in Quercus dentata Thunb.:a comparison of traditional and geometric morphometric methods,a pilot study 被引量:1
1
作者 Kaiyu Yang Jianghao Wu +4 位作者 Xinman Li Xinbo Pang Yangchen Yuan Guohui Qi Minsheng Yang 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第6期1751-1764,共14页
To compare the application of traditional morphometric methods(TMMs)and geometric morphometric methods(GMMs)in the study of intraspecific leaf morphological characters of Quercus dentata,fifteen linear measurement ind... To compare the application of traditional morphometric methods(TMMs)and geometric morphometric methods(GMMs)in the study of intraspecific leaf morphological characters of Quercus dentata,fifteen linear measurement indices and thirteen landmarks of leaves were used to study leaf morphology of three provenances(H1,H2,and H3).In TMMs,principal component analysis(PCA)showed that leaf size–related indices played an important role in population classification.Partial least square(PLS)analysis showed that the main morphological characters affecting leaf size were the average depth of the lobes and the length–width ratios.However,the important indices to distinguish the provenances were circularity,leaf width,and length–width ratio.The results of discriminant analysis(DA)showed that 74.0%of H1,68.0%of H2,and 74.0%of H3 were correctly classified.Cluster analysis showed that the Mahalanobis distances between H1 and H2,H1 and H3,and H2 and H3 were 4.3761,11.4629,and 10.2067,respectively.In GMMs,PCA based on symmetrical components showed that the difference in leaf morphology was mainly due to the changing trend of the leaf apex and base,petiole length,and degree of leaf cracking.PLS analysis showed that there was a significant covariation between the leaf symmetrical components and size:as the leaf enlarged,the widest part gradually moved up,and the shape changed from nearly oval to lanceolate.DA results showed that 86.0%and 78.0%of H1 and H2,70.0%and 80.0%of H1 and H3,and 82.0%and 76.0%of H2 and H3 were correctly classified.Canonical variate analysis results showed that the Mahalanobis distances between H1 and H2,H1 and H3,and H2 and H3 were 1.7238,1.5380,and 1.6329,respectively.Both GMMs and TMMs showed significant differences in morphology among the three Q.dentata provenances,but GMMs had higher classification accuracy and could provide more information about leaf shape,whereas TMMs could provide more information about leaf size.Based on our results,GMMs are promising in the study of leaf morphological variation within Q.dentata provenances. 展开更多
关键词 Traditional morphometrics Geometric morphometrics leaf morphology variation Quercus dentata INTRASPECIFIC
下载PDF
Leaf stable carbon isotope composition in Picea schrenkiana var. tianschanica in relation to leaf physiological and morphological characteristics along an altitudinal gradient
2
作者 ZHANG Hui-wen WU Zhen XIAO Hong-lang 《Journal of Mountain Science》 SCIE CSCD 2016年第7期1217-1228,共12页
To understand the effects of leaf physiological and morphological characteristics on δ13C of alpine trees, we examined leaf δ13C value, LA, SD, LNC, LPC, LKC, Chla+b, LDMC, LMA and Narea in one-year-old needles of P... To understand the effects of leaf physiological and morphological characteristics on δ13C of alpine trees, we examined leaf δ13C value, LA, SD, LNC, LPC, LKC, Chla+b, LDMC, LMA and Narea in one-year-old needles of Picea schrenkiana var. tianschanica at ten points along an altitudinal gradient from 1420 m to 2300 m a.s.l. on the northern slopes of the Tianshan Mountains in northwest China. Our results indicated that all the leaf traits differed significantly among sampling sites along the altitudinal gradient(P<0.001). LA, SD, LPC, LKC increased linearly with increasing elevation, whereas leaf δ13C, LNC, Chla+b, LDMC, LMA and Narea varied non-linearly with changes in altitude. Stepwise multiple regression analyses showed that four controlled physiological and morphological characteristics influenced the variation of δ13C. Among these four controlled factors, LKC was the most profound physiological factor that affected δ13C values, LA was the secondary morphological factor, SD was the third morphological factor, LNC was the last physiological factor. This suggested that leaf δ13C was directly controlled by physiological and morphological adjustments with changing environmental conditions due to the elevation. 展开更多
关键词 Alpine trees leaf Carbon isotope composition Physiological characteristics Morphological characteristics Altitudinal variation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部