An enhanced small-signal model is introduced to model the influence of the impact ionization effect on the performance of In As/Al Sb HFET, in which an optimized fitting function D(ωτi) in the form of least square...An enhanced small-signal model is introduced to model the influence of the impact ionization effect on the performance of In As/Al Sb HFET, in which an optimized fitting function D(ωτi) in the form of least square approximation is proposed in order to further enhance the accuracy in modeling the frequency dependency of the impact ionization effect.The enhanced model with D(ωτi) can accurately characterize the key S parameters of In As/Al Sb HFET in a wide frequency range with a very low error function EF. It is demonstrated that the new fitting function D(ωτi) is helpful in further improving the modeling accuracy degree.展开更多
An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C-V curve of MOS capacitors measured for a frequency range from...An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C-V curve of MOS capacitors measured for a frequency range from 1 kHz to1 MHz.The proposed model is based on the Fermi-Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal.The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data.Simulations indicate thatthe capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface,with negligible effects from the traps far from the interface,and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed.In addition,by excluding the negligible effect of oxide-trap conductance,the model avoids the use of imaginary numbers and complex calculations,and thus is simple and intuitive.展开更多
HfGdO high-k gate dielectric thin films were deposited on Ge substrates by radio-frequency magnetron sputtering. The current transport properties of Al(Pt)/HfGdO/Ge MOS structures were investigated at room temperatu...HfGdO high-k gate dielectric thin films were deposited on Ge substrates by radio-frequency magnetron sputtering. The current transport properties of Al(Pt)/HfGdO/Ge MOS structures were investigated at room temperature. The results show that the leakage currents are mainly induced by Frenkel-Poole emissions at a low electric field. At a high electric field, Fowler Nordheim tunneling dominates the current. The energy barriers were obtained by analyzing the Fowler Nordheim tunneling characteristics, which are 1.62 eV and 2.77 eV for Al/HfGdO and Pt/HfGdO, respectively. The energy band alignments for metal/HfGdO/Ge capacitors are summarized together with the results of current-voltage and the x-ray photoelectron spectroscopy.展开更多
文摘An enhanced small-signal model is introduced to model the influence of the impact ionization effect on the performance of In As/Al Sb HFET, in which an optimized fitting function D(ωτi) in the form of least square approximation is proposed in order to further enhance the accuracy in modeling the frequency dependency of the impact ionization effect.The enhanced model with D(ωτi) can accurately characterize the key S parameters of In As/Al Sb HFET in a wide frequency range with a very low error function EF. It is demonstrated that the new fitting function D(ωτi) is helpful in further improving the modeling accuracy degree.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176100 and 61274112)the University Development Fund of the University of Hong Kong,China(Grant No.00600009)the Hong Kong Polytechnic University,China(Grant No.1-ZVB1)
文摘An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C-V curve of MOS capacitors measured for a frequency range from 1 kHz to1 MHz.The proposed model is based on the Fermi-Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal.The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data.Simulations indicate thatthe capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface,with negligible effects from the traps far from the interface,and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed.In addition,by excluding the negligible effect of oxide-trap conductance,the model avoids the use of imaginary numbers and complex calculations,and thus is simple and intuitive.
基金Project supported by the Natural Science Foundation of Shanghai(No.15ZR1418700)the Natural Science Foundation of China(Nos.51272159,61405118)the Natural Science Foundation of Zhejiang(Nos.LY15A040001,LQ13A040004)
文摘HfGdO high-k gate dielectric thin films were deposited on Ge substrates by radio-frequency magnetron sputtering. The current transport properties of Al(Pt)/HfGdO/Ge MOS structures were investigated at room temperature. The results show that the leakage currents are mainly induced by Frenkel-Poole emissions at a low electric field. At a high electric field, Fowler Nordheim tunneling dominates the current. The energy barriers were obtained by analyzing the Fowler Nordheim tunneling characteristics, which are 1.62 eV and 2.77 eV for Al/HfGdO and Pt/HfGdO, respectively. The energy band alignments for metal/HfGdO/Ge capacitors are summarized together with the results of current-voltage and the x-ray photoelectron spectroscopy.