Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter...Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter is 2.55 nm, while the specific surface area is 1 088.9 m2/g. Mesoporous SiO_2 microspheres adsorb glutaraldehyde and immobilize laccase by means of the aldehyde group in glutaral which can react with the amidogen of laccase. The immobilization conditions were optimized at a glutaraldehyde concentration of 0.75%, a crosslinking time of 8 h, a laccase concentration of 0.04 L/L and an immobilization time of 10 h. When diesel leakage concentration was 80 mg/L, the highest corrosion inhibition efficiency of immobilized laccase reached 49.23%, which was slightly lower than the corrosion inhibition efficiency of free laccase(59%). The diesel degradation ratio could reach up to 45%. It has been proved that the immobilized laccase could degrade diesel to inhibit corrosion.展开更多
基金supported by the Foundation for Top Talents Program of China University of Petroleum
文摘Mesoporous SiO_2 microspheres were synthesized using the sol-gel method and were characterized by TEM, FT-IR and BET techniques. The diameter of the microspheres is about 100—150 nm, and the average mesopore diameter is 2.55 nm, while the specific surface area is 1 088.9 m2/g. Mesoporous SiO_2 microspheres adsorb glutaraldehyde and immobilize laccase by means of the aldehyde group in glutaral which can react with the amidogen of laccase. The immobilization conditions were optimized at a glutaraldehyde concentration of 0.75%, a crosslinking time of 8 h, a laccase concentration of 0.04 L/L and an immobilization time of 10 h. When diesel leakage concentration was 80 mg/L, the highest corrosion inhibition efficiency of immobilized laccase reached 49.23%, which was slightly lower than the corrosion inhibition efficiency of free laccase(59%). The diesel degradation ratio could reach up to 45%. It has been proved that the immobilized laccase could degrade diesel to inhibit corrosion.