A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage(200 mV) applications.Almost all of the previous subthreshold works ignore the leakage current in both active and st...A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage(200 mV) applications.Almost all of the previous subthreshold works ignore the leakage current in both active and standby modes.To minimize leakage,a self-adaptive leakage cut off scheme is adopted in the proposed design without any extra dynamic energy dissipation or performance penalty.Combined with buffering circuit and reconfigurable operation,the proposed design ensures both read and standby stability without deteriorating writability in the subthreshold region.Compared to the referenced subthreshold SRAM bitcell,the proposed bitcell shows:(1) a better critical state noise margin,and(2) smaller leakage current in both active and standby modes. Measurement results show that the proposed SRAM functions well at a 200 mV supply voltage with 0.13μW power consumption at 138 kHz frequency.展开更多
Coordinated multi-point (CoMP) transmission is put forward in the long term evolution-advanced (LTE-A) system to improve both average and cell-edge throughput. CoMP-joint pro- cessing (JP) scheme can get a large...Coordinated multi-point (CoMP) transmission is put forward in the long term evolution-advanced (LTE-A) system to improve both average and cell-edge throughput. CoMP-joint pro- cessing (JP) scheme can get a larger cell-edge throughput and a lower bit error rate (BER) than the CoMP-coordinated beamform- ing (CB) scheme, but it also has higher complexity due to data sharing. A hybrid coordinated strategy with parameter c~, which indicates the proportion of users employing the CoMP-JP scheme, is proposed to apply the CoMP-JP scheme to improve the poorer communication quality of cell edge and employ the CoMP-CB scheme for other users to enhance average throughput and spec- tral efficiency. This paradigm selects users defined by the certain threshold of signal to interference plus noise power ratio (SINR) corresponding to the parameter a to the CoMP-JP scheme. This paper compares the BER performance between the block diag- onalization (BD) based precoding and the linear precoders by maximizing signal to leakage and noise ratio (SLNR), and also in- dicates that the SLNR based precoding algorithm gets lower BER than the BD based precoding algorithm with certain signal-to-noise ratios (SNRs). Finally, this paper discusses that the system perfor- mance is partially affected by the percentage of CoMP-JP users and concludes that 50% of users sorted to communicate under the CoMP-JP scheme will reach the best system performance.展开更多
Well-controlled resource allocation is crucial for promoting the performance of multiple input multiple output orthogonal frequency division multiplexing(MIMO-OFDM) systems. Recent studies have focused primarily on tr...Well-controlled resource allocation is crucial for promoting the performance of multiple input multiple output orthogonal frequency division multiplexing(MIMO-OFDM) systems. Recent studies have focused primarily on traditional centralized systems or distributed antenna systems(DASs), and usually assumed that one sub-carrier or sub-channel is exclusively occupied by one user. To promote system performance, we propose a sub-channel shared resource allocation algorithm for multiuser distributed MIMO-OFDM systems. Each sub-channel can be shared by multiple users in the algorithm, which is different from previous algorithms. The algorithm assumes that each user communicates with only two best ports in the system. On each sub-carrier, it allocates a sub-channel in descending order, which means one sub-channel that can minimize signal to leakage plus noise ratio(SLNR) loss is deleted until the number of remaining sub-channels is equal to that of receiving antennas. If there are still sub-channels after all users are processed, these sub-channels will be allocated to users who can maximize the SLNR gain. Simulations show that compared to other algorithms, our proposed algorithm has better capacity performance and enables the system to provide service to more users under the same capacity constraints.展开更多
基金supported by the China State-Funded Study Abroad Program for High-Level Universities
文摘A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage(200 mV) applications.Almost all of the previous subthreshold works ignore the leakage current in both active and standby modes.To minimize leakage,a self-adaptive leakage cut off scheme is adopted in the proposed design without any extra dynamic energy dissipation or performance penalty.Combined with buffering circuit and reconfigurable operation,the proposed design ensures both read and standby stability without deteriorating writability in the subthreshold region.Compared to the referenced subthreshold SRAM bitcell,the proposed bitcell shows:(1) a better critical state noise margin,and(2) smaller leakage current in both active and standby modes. Measurement results show that the proposed SRAM functions well at a 200 mV supply voltage with 0.13μW power consumption at 138 kHz frequency.
基金supported by the National Science and Technology Major Project of China(2013ZX03001024-003)
文摘Coordinated multi-point (CoMP) transmission is put forward in the long term evolution-advanced (LTE-A) system to improve both average and cell-edge throughput. CoMP-joint pro- cessing (JP) scheme can get a larger cell-edge throughput and a lower bit error rate (BER) than the CoMP-coordinated beamform- ing (CB) scheme, but it also has higher complexity due to data sharing. A hybrid coordinated strategy with parameter c~, which indicates the proportion of users employing the CoMP-JP scheme, is proposed to apply the CoMP-JP scheme to improve the poorer communication quality of cell edge and employ the CoMP-CB scheme for other users to enhance average throughput and spec- tral efficiency. This paradigm selects users defined by the certain threshold of signal to interference plus noise power ratio (SINR) corresponding to the parameter a to the CoMP-JP scheme. This paper compares the BER performance between the block diag- onalization (BD) based precoding and the linear precoders by maximizing signal to leakage and noise ratio (SLNR), and also in- dicates that the SLNR based precoding algorithm gets lower BER than the BD based precoding algorithm with certain signal-to-noise ratios (SNRs). Finally, this paper discusses that the system perfor- mance is partially affected by the percentage of CoMP-JP users and concludes that 50% of users sorted to communicate under the CoMP-JP scheme will reach the best system performance.
基金Project supported by the National High-Tech R&D Program(863) of China(Nos.2012AA01A502 and 2012AA01A505)
文摘Well-controlled resource allocation is crucial for promoting the performance of multiple input multiple output orthogonal frequency division multiplexing(MIMO-OFDM) systems. Recent studies have focused primarily on traditional centralized systems or distributed antenna systems(DASs), and usually assumed that one sub-carrier or sub-channel is exclusively occupied by one user. To promote system performance, we propose a sub-channel shared resource allocation algorithm for multiuser distributed MIMO-OFDM systems. Each sub-channel can be shared by multiple users in the algorithm, which is different from previous algorithms. The algorithm assumes that each user communicates with only two best ports in the system. On each sub-carrier, it allocates a sub-channel in descending order, which means one sub-channel that can minimize signal to leakage plus noise ratio(SLNR) loss is deleted until the number of remaining sub-channels is equal to that of receiving antennas. If there are still sub-channels after all users are processed, these sub-channels will be allocated to users who can maximize the SLNR gain. Simulations show that compared to other algorithms, our proposed algorithm has better capacity performance and enables the system to provide service to more users under the same capacity constraints.