为了减少装配作业车间内因物料齐套产生的等待浪费,使具有装配约束的关联零件加工进度得到有效协同,设计一类卡片导航平衡控制系统(control of balance by card-based navigation,COBACABANA)。其基于两类卡片循环回路实现任务投放与作...为了减少装配作业车间内因物料齐套产生的等待浪费,使具有装配约束的关联零件加工进度得到有效协同,设计一类卡片导航平衡控制系统(control of balance by card-based navigation,COBACABANA)。其基于两类卡片循环回路实现任务投放与作业分派的可视化进度协同控制逻辑。本文详细介绍系统的运行机制和系统控制参量,通过构建一般化的装配作业车间仿真模型,探讨在不同装配关联度下各控制参量的性能变化。实验结果表明,COBACABANA系统性能良好,并且选择合适的控制参量就能够有效提升关联零件的进度协同性。展开更多
Time compression in supply chains is a crucial aspect involved in the integration of warehousing and transport operations in the manufacturing industries. Sup- ply chain flows could be interrupted due to many sources ...Time compression in supply chains is a crucial aspect involved in the integration of warehousing and transport operations in the manufacturing industries. Sup- ply chain flows could be interrupted due to many sources of delays that lead to additional time in dispatching process and reduction in customer service level. The problem considered in this paper consists of long waiting times of loading vehicles inside the plant. This work presents a simulation-based study to minimize vehicle dispatching time in a steel wire plant. Value stream map is developed to present a system perspective of processes involved in the overall supply chain. Process activity mapping is com- pleted to provide a step by step analysis of activities involved in the vehicle dispatch process. A simulation model is developed for the system and a new model is proposed to improve the delivery performance by mini- mizing vehicles' waiting time.展开更多
文摘为了减少装配作业车间内因物料齐套产生的等待浪费,使具有装配约束的关联零件加工进度得到有效协同,设计一类卡片导航平衡控制系统(control of balance by card-based navigation,COBACABANA)。其基于两类卡片循环回路实现任务投放与作业分派的可视化进度协同控制逻辑。本文详细介绍系统的运行机制和系统控制参量,通过构建一般化的装配作业车间仿真模型,探讨在不同装配关联度下各控制参量的性能变化。实验结果表明,COBACABANA系统性能良好,并且选择合适的控制参量就能够有效提升关联零件的进度协同性。
文摘Time compression in supply chains is a crucial aspect involved in the integration of warehousing and transport operations in the manufacturing industries. Sup- ply chain flows could be interrupted due to many sources of delays that lead to additional time in dispatching process and reduction in customer service level. The problem considered in this paper consists of long waiting times of loading vehicles inside the plant. This work presents a simulation-based study to minimize vehicle dispatching time in a steel wire plant. Value stream map is developed to present a system perspective of processes involved in the overall supply chain. Process activity mapping is com- pleted to provide a step by step analysis of activities involved in the vehicle dispatch process. A simulation model is developed for the system and a new model is proposed to improve the delivery performance by mini- mizing vehicles' waiting time.