Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the el...Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the electrolyte volume generally produces low practical energy because of the limited electrochemical Li-S redox.Herein,the high energy/high performance of a Li-S full battery with practical sulfur loading and minimum electrolyte volume is reported.A unique hybrid architecture configured with Ni-Co metal alloy(NiCo)and metal oxide(NiCoO_(2))nanoparticles heterogeneously anchored in carbon nanotube-embedded selfstanding carbon matrix is fabricated as a host for sulfur.This work demonstrates the considerable improvement that the hybrid structure's high conductivity and satisfactory porosity promote the transport of electrons and lithium ions in Li-S batteries.Through experimental and theoretical validations,the function of NiCo and NiCoO_(2) nanoparticles as an efficient polysulfide mediator is established.These particles afford polysulfide anchoring and catalytic sites for Li-S redox reaction,thus improving the redox conversion reversibility.Even at high sulfur loading,the nanostructured Ni-Co metal alloy and metal oxide enable to have stable cycling performance under lean electrolyte conditions both in half-cell and full-cell batteries using a graphite anode.展开更多
Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyze...Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries.展开更多
The practical energy density of lithium-sulfur batteries(LSBs)is seriously limited by the high electrolyte-to-sulfur ratios(E/S).The E/S can be reduced by employing hosts with easy-to-infiltrate structure that ensures...The practical energy density of lithium-sulfur batteries(LSBs)is seriously limited by the high electrolyte-to-sulfur ratios(E/S).The E/S can be reduced by employing hosts with easy-to-infiltrate structure that ensures the uniform distribution of a lean electrolyte and high catalytic activity that can suppress"shuttle effect"via accelerating the slow conversion of soluble poly sulfides to insoluble sulfides.Among the easy-to-infiltrate structures,the three-dimensional-ordered macroporous(3DOM)structure is easier to scale preparation and more suitable for the existing industrial processes.However,it is difficult to obtain the 3DOM with(1)high penetrability due to the high viscosity of frequently-used organic polymer precursors and(2)high catalytic activity due to the low confinement effect,meaning that uniformly dispersed small-sized catalytic materials are difficult to load on 3DOM.Herein,using carbon dots(CDs)with both organic and inorganic properties as a precursor and aggregation limiting agent,a 3DOM host with high penetrability and homodispersed Ni particles of small sizes(Ni-CDs-3DOM)was synthesized.In this host:(1)CDs precursor with suitable viscosity can improve the penetrability.(2)CDs can effectively inhibit the agglomeration of Ni particles.(3)Uniformly dispersed small-size Ni particles offer high-efficiency catalytic activity toward sulfur reactions.Consequently,the Ni-CDs-3DOM/sulfur cathode exhibits high sulfur utilization and stable cycling performance even under high sulfur loading(5.5 mg·cm^(-2))and low E/S(6.5μl·mg^(-1)).This work indicates the usefulness of CDs in constructing hosts for LSBs with high energy density.展开更多
The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processe...The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processes.Two-dimensional(2D)few layered black phosphorus with fully exposed atoms and high sulfur affinity can be potential lithium-sulfur battery electrocatalysts,which,however,have limitations of restricted catalytic activity and poor electrochemical/chemical stability.To resolve these issues,we developed a multifunctional metal-free catalyst by covalently bonding few layered black phosphorus nanosheets with nitrogen-doped carbon-coated multiwalled carbon nanotubes(denoted c-FBP-NC).The experimental characterizations and theoretical calculations show that the formed polarized P-N covalent bonds in c-FBP-NC can efficiently regulate electron transfer from NC to FBP and significantly promote the capture and catalysis of lithium polysulfides,thus alleviating the shuttle effect.Meanwhile,the robust 1D-2D interwoven structure with large surface area and high porosity allows strong physical confinement and fast mass transfer.Impressively,with c-FBP-NC as the sulfur host,the battery shows a high areal capacity of 7.69 mAh cm^(−2) under high sulfur loading of 8.74 mg cm^(−2) and a low electrolyte/sulfur ratio of 5.7μL mg^(−1).Moreover,the assembled pouch cell with sulfur loading of 4 mg cm^(−2) and an electrolyte/sulfur ratio of 3.5μL mg^(−1) shows good rate capability and outstanding cyclability.This work proposes an interfacial and electronic structure engineering strategy for fast and durable sulfur electrochemistry,demonstrating great potential in lithium-sulfur batteries.展开更多
Efficient redox reactions of lean electrolyte lithium-sulfur(Li-S)batteries highly rely on rational catalyst design.Herein,we report an electrocatalyst based on N-doped carbon nanotubes(CNT)-encapsulated Ni nanopartic...Efficient redox reactions of lean electrolyte lithium-sulfur(Li-S)batteries highly rely on rational catalyst design.Herein,we report an electrocatalyst based on N-doped carbon nanotubes(CNT)-encapsulated Ni nanoparticles(Ni@NCNT)as kinetics regulators for Li-S batteries to propel the polysulfide-involving multiphase transformation.Moreover,such a CNT-encapsulation strategy greatly prevents the aggregation of Ni nanoparticles and enables the extraordinary structural stability of the hybrid electrocatalyst,which guarantees its persistent catalytic activity on sulfur redox reactions.When used as a modified layer on a commercial separator,the Ni@NCNT interlayer contributes to stabilizing S cathode and Li anode by significantly retarding the shuttle effect.The corresponding batteries with a 3.5 mg cm^(−2)sulfur loading achieve the promising cycle stability with~85%capacity retention at the electrolyte/sulfur ratios of 5 and 3μL mg^(−1).Even at a high loading of 12.2 mg cm^(−2),the battery affords an areal capacity of 7.5 mA h cm^(−2).展开更多
Lithium-sulfur(Li-S)batteries possess overwhelming energy density of 2654 Wh kg-1,and are considered as the next-generation battery technology for energy demanding applications.Flooded electrolytes are ubiquitously em...Lithium-sulfur(Li-S)batteries possess overwhelming energy density of 2654 Wh kg-1,and are considered as the next-generation battery technology for energy demanding applications.Flooded electrolytes are ubiquitously employed in cells to ensure sufficient redox kinetics and preclude the interference of the electrolyte depletion due to side reactions with the lithium metal anode.This strategy is capable of enabling long-lasting,high-capacity and excellent-rate battery performances,but it mask the requirements of practical Li-S batteries,where high-sulfur-loading/content and lean electrolyte are prerequisite to realize the energy-dense Li-S batteries.Sparingly and highly solvating electrolytes have emerged as effective yet simple approaches to decrease the electrolyte/sulfur ratio through altering sulfur species and exerting new reaction pathways.Sparingly solvating electrolytes are characterized by few free solvents to solvate lithium polysulfides,rendering a quasi-solid sulfur conversion and decoupling the reaction mechanisms from electrolyte quantity used in cells;while highly solvating electrolytes adopt highdonicity or high-permittivity solvents and take their advantages of strong solvation ability toward polysulfide intermediates,thereby favoring the polysulfide formation and stabilizing unique radicals,which subsequently accelerate redox kinetics.Both solvation chemistry approaches have their respective features to allow the operation of cells under electrolyte-starved conditions.This Review discusses their unique features and basic physicochemical properties in the working Li-S batteries,presents remaining technical and scientific issues and provides future directions for the electrolyte chemistry to attain highenergy Li-S batteries.展开更多
While the sulfur conversion reaction kinetics in Li–S batteries is nowadays improved by the use of appropriate electrocatalysts,it remains a challenge for the batteries to perform well under the lean electrolyte cond...While the sulfur conversion reaction kinetics in Li–S batteries is nowadays improved by the use of appropriate electrocatalysts,it remains a challenge for the batteries to perform well under the lean electrolyte condition where polysulfide shuttle,electrode passivation and the loss of electrolyte due to side reactions,are aggravated.These challenges are addressed in this study by the tandem use of a polysulfide conversion catalyst and a redox–targeting mediator in a gel sulfur cathode.Specifically,the gel cathode reduces the polysulfide mobility and hence the polysulfide shuttle and the passivation of the lithium anode by the crossover polysulfides.The redox mediator restrains the deposition of inactive sulfur species in the cathode thereby enabling the Fe–N and Co–N co–doped carbon catalyst to prolong its catalytic activity.Consequently,the integrated catalytic system is able to increase the discharge capacity of high–loading (6.8 mg cm^(-2)) lean–electrolyte (4.0μL mg^(-1)) Li–S batteries from~630 to~1316 m Ah g^(-1),concurrently with an improvement of the cycle life (600 cycles with 46%capacity retention at 1.0 m A cm^(-2)).Redox mediator assisted catalysis in a gel cathode is therefore an effective strategy to extend the application of the sulfur conversion catalyst in lean electrolyte Li–S batteries.展开更多
An unstable solid electrolyte interphase(SEI)and chaotic lithium ion fux are key impediments to commercial high-energy-density lithium batteries because of the uncontrolled growth of rigid lithium dendrites,which woul...An unstable solid electrolyte interphase(SEI)and chaotic lithium ion fux are key impediments to commercial high-energy-density lithium batteries because of the uncontrolled growth of rigid lithium dendrites,which would pierce through the conventional polypropylene(PP)separator,causing short circuit and safety issues.Herein,the homogenization of lithium ion fux and the generation of stable SEI layers on lithium anodes were achieved via coating a fuorine-functionalized Ti_(3)C_(2)(F-Ti_(3)C_(2))nanosheets on PP separator(F-Ti_(3)C_(2)@PP).F-Ti_(3)C_(2)nanosheets provide abundant ions pathways to homogeneously manipulate lithium ion fux and increase the Young’s modulus and electrolyte wettability of the separators.In addition,F species derived from the F-Ti_(3)C_(2)nanosheets would promote the formation of Li F-rich SEI film.The synergistic effect contribute to the uniform lithium deposition.Symmetric Li|Li,asymmetric Li|Cu and full Li|Li Fe PO4cells incorporated with the modified separators exhibit improved electrochemical performance even under lean electrolyte conditions.This work provides a feasible strategy to improve the performance of lithium batteries through both fuoridized SEI formation and lithium ion fux manipulation.展开更多
Tremendous effort has been devoted to lithium‐sulfur batteries,where flooded electrolytes have been employed ubiquitously.The use of lean electrolytes albeit indispensable for practical applications often causes low ...Tremendous effort has been devoted to lithium‐sulfur batteries,where flooded electrolytes have been employed ubiquitously.The use of lean electrolytes albeit indispensable for practical applications often causes low capacity and fast capacity fading of the sulfur cathode;thus,the electrolyte/sulfur active mass ratios below 5μL/mg have been rarely reported.Herein,we demonstrate that ZnS coating transforms sulfur cathode materials electrolyte‐philic,which tremendously promotes the performance in lean electrolytes.The ZnS‐coated Li2S@graphene cathode delivers an initial discharge capacity of 944mAh/g at an E/S ratio of 2μL/mg at the active mass loading of 5.0 mg Li2S/cm^2,corresponding to an impressive specific energy of 500Wh/kg based on the mass of cathode,electrolyte,and the assumed minimal mass of lithium metal anode.Density functional theory calculations reveal strong binding between ZnS crystals and electrolyte solvent molecules,explaining the better wetting properties.We also demonstrate the reversible cycling of a hybrid cathode of ZnS‐coated Li2S@graphene mixed with VS2 as an additive at an E/AM(active mass)ratio of 1.1μL/mg,equivalent to the specific energy of 432 Wh/kg on the basis of the mass of electrodes and electrolyte.展开更多
High sulphur loading and lean electrolyte conditions are important to achieve the high theoretical energy density of lithiumsulphur(Li-S)batteries.However,serious problems such as low sulphur utilization and fast capa...High sulphur loading and lean electrolyte conditions are important to achieve the high theoretical energy density of lithiumsulphur(Li-S)batteries.However,serious problems such as low sulphur utilization and fast capacity fade are typically experienced under low electrolyte/sulphur(E/S)ratios and high sulphur loading conditions.To address these issues,a cobaltcontaining three-dimensional conductive honeycomb(Co@N-HPC)is proposed in this work as a material for sulphur cathodes.The good electrical conductivity and high density of catalytic sites of(Co@N-HPC)allow fast redox kinetics of lithium polysulfide(LiPS)in high-sulphur-loading electrodes.In addition,the hierarchical structure and good wettability by the electrolyte of Co@NHPC facilitates electrolyte penetration and LiPS conversion,leading to a high utilization of sulphur under lean electrolyte conditions.Therefore,at a current density of 0.2 C,a volumetric capacity of 1,410 mAh·cm^(−3)was attained with a sulphur loading of 5.1 mg·cm^(−2)and an E/S ratio of 5μL·mg^(−1).This work provides ideas for the development of lean electrolyte Li-S batteries with a high sulphur loading.展开更多
Lean electrolyte usage in lithium–sulfur battery(LSB)meets the demand of the high energy density.However,lean condition makes the electrolyte-related interface discrete,leading to retardation of ion transfer that dep...Lean electrolyte usage in lithium–sulfur battery(LSB)meets the demand of the high energy density.However,lean condition makes the electrolyte-related interface discrete,leading to retardation of ion transfer that depends on interfaces.Consequently,electrochemical reactions face restraint.Herein,lithium polyacrylate acid(LiPAA)with short-chain anions(molecular weight of 2000)is introduced into the cathode.Because of the polysulfide(PS)-philic instinct of the short-chain PAA anions,short-chain PS is captured inside of the cathode.In addition,LiPAA supplies Li^(+)to the short-chain PS captured.The strong interaction between Li_(2)S_(4)and LiPAA effectively decreases Li_(2)S_(4)migration to the anode during discharging.In a sense,the ion mass transfer pattern is thus changed comparing to traditional long-way mode between cathode and anode.Galvanostatic intermittent titration technique(GITT)proves that the interfacial reaction resistance is greatly decreased in the region where Li_(2)S_(x)(x≤4)reduction contributes most.In the same time,the reversibility of electrochemical reduction/oxidation is improved.Owing to the accelerated Li_(2)S_(x)(x≤4)reduction,Li implanting of only 0.3 wt.%plus O introduction up to 1.4 wt.%enables the LSB perform well even with 1/4 of regular electrolyte dosage(5μL mg^(-1))and high-sulfur loading(4.2 mg cm^(-2)),increasing its rate capacity C_(0.8/0.5)from 52.6%(without the LiPAA)to 92.3%(with the LiP AA)as well as a capacity of 518.7 mAh g^(-1)after 400 cycles at 0.8 mA cm^(-2).展开更多
The mass fraction of electrolytes is the crucial factor affecting the energy density of lithium-sulfur(Li-S)batteries. Due to the high porosity within the C/S cathode, high concentration of polysulfides, and side reac...The mass fraction of electrolytes is the crucial factor affecting the energy density of lithium-sulfur(Li-S)batteries. Due to the high porosity within the C/S cathode, high concentration of polysulfides, and side reaction in lithiun metal anode under lean electrolyte, it is extremely challenging to improve performance while reducing the electrolyte volume. Here, we report a novel electrolyte with relatively low density(1.16 g cm^(-2)), low viscosity(1.84 m Pa s), and high ionic conductivity, which significantly promotes energy density and cyclability of Li-S batteries under practical conditions. Moreover, such electrolyte enables a hybrid cathode electrolyte interphase(CEI) and solid electrolyte interface(SEI) layer with plentiful Li F, which leads to fast kinetics of ions transport and stable cyclability even under low temperatures.Compared to Li-S batteries in electrolyte employing 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether(TTE) diluent, the ultra-thick cathode(20 mg cm^(-2)) shows a high capacity of 9.48 m Ah cm^(-2)and excellent capacity retention of 80.3% over 191 cycles at a low electrolyte-to-sulfur ratio(E/S = 2) and negative-to-positive capacity ratio(N/P = 2.5), realizing a 19.2% improvement in energy density in coin cells(from 370 to 441 Wh kg^(-1)) and a high energy density up to 467 Wh kg^(-1) in pouch cells. This study not only provides guidance for the electrolyte design but also paves the way for the development of high performance Li-S batteries under practical conditions.展开更多
High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation condit...High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation conditions reveals a huge gap between the demands for practical batteries and those in the literature.Low sulfur loading,a high electrolyte/sulfur(E/S)ratio and excess anodes for lab-scale LSBs significantly offset their high-energy merit.To approach practical LSBs,high loading and lean electrolyte parameters are needed,which involve budding challenges of slow charge transfer,polysulfide precipitation and severe shuttle effects.To track these obstacles,the exploration of electrocatalysts to immobilize polysulfides and accelerate Li-S redox kinetics has been widely reported.Herein,this review aims to survey state-of-the-art catalytic materials for practical LSBs with emphasis on elucidating the correlation among catalyst design strategies,material structures and electrochemical performance.We also statistically evaluate the state-of-the-art catalyst-modified LSBs to identify the remaining discrepancy between the current advancements and the real-world requirements.In closing,we put forward our proposal for a catalytic material study to help realize practical LSBs.展开更多
Lithium-sulfur(Li-S)batteries hold great promise to be the next-generation candidate for high-energy-density secondary batteries but in the prerequisite of using low electrolyte-to-sulfur(E/S)ratios.Highly solvating e...Lithium-sulfur(Li-S)batteries hold great promise to be the next-generation candidate for high-energy-density secondary batteries but in the prerequisite of using low electrolyte-to-sulfur(E/S)ratios.Highly solvating electrolytes(HSEs)and sparingly solvating electrolytes(SSEs),with opposite nature towards the dissolution of polysulfides,have recently emerged as two effective solutions to decrease the E/S ratio and increase the overall practical energy density of Li-S batteries.HSEs featuring with high polysulfide solvation ability have the potential to reduce the E/S ratio by dissolving more polysulfides with less electrolyte,while SSEs alter the sulfur reaction pathway from a dissolution-precipitation mechanism to a quasi-solid mechanism,thereby independent on the use of electrolyte amount.Both HSEs and SSEs show respective effectiveness in lean-electrolyte Li-S batteries,but encounter different challenges to bring Li-S batteries into practical application.This review aims to present a comparative discussion on their unique features and basic electrochemical reaction mechanisms in practical lean-electrolyte Li-S batteries.Emphasis is focused on the current technical challenges and possible solutions for their future development.展开更多
Lithium(Li) metal,possessing an extremely high theoretical specific capacity(3860 mAh/g) and the most negative electrode potential(-3.040 V vs.standard hydrogen electrode),is one the most favorable anode materials for...Lithium(Li) metal,possessing an extremely high theoretical specific capacity(3860 mAh/g) and the most negative electrode potential(-3.040 V vs.standard hydrogen electrode),is one the most favorable anode materials for future high-energy-density batteries.However,the poor cyclability and safety issues induced by extremely unstable interfaces of traditional liquid Li metal batteries have limited their practical applications.Herein,a quasi-solid battery is constructed to offer superior interfacial stability as well as excellent interfacial contact by the incorporation of Li@composite solid electrolyte integrated electrode and a limited amount of liquid electrolyte(7.5 μL/cm2).By combining the inorganic garnet Aldoped Li6.75La3Zr1.75Ta0.25O12(LLZO) with high mechanical strength and ionic conductivity and the o rganic ethylene-vinyl acetate copolymer(EVA) with good flexibility,the composite solid electrolyte film could provide sufficient ion channels,sustained interfacial contact and good mechanical stability at the anode side,which significantly alleviates the thermodynamic corrosion and safety problems induced by liquid electrolytes.This innovative and facile quasi-solid strategy is aimed to promote the intrinsic safety and stability of working Li metal anode,shedding light on the development of next-generation highperformance Li metal batteries.展开更多
Electrolyte formulation with high stability towards both Li metal anode and high-voltage cathode is considered as one of key points for the high-energy density lithium metal batteries(LMBs).In our previous study,by ad...Electrolyte formulation with high stability towards both Li metal anode and high-voltage cathode is considered as one of key points for the high-energy density lithium metal batteries(LMBs).In our previous study,by adding only 2%of 2-fluoropyridine(2-FP)as the additive in the carbonate and ether-based electrolyte formulations effectively suppressed Li dendrite growth.In this study,we further found that the main fluoropyridine(FP)family members can serve as not only the effective additive but also the excellent electrolyte solvent in the electrolyte formulations to enhance the performance of LMBs.For the 2-FP,when it was also used the electrolyte solvent and paired with single-salt lithium bis(trifluoromethylsulfonyl)imide(Li TFSI),the obtained electrolyte formulation of 1 M Li TFSI in pure2-FP solvent not only allowed faster ion transport though solvation effect,but also possessed impressive oxidation stability window over 4.3 V.As a result,the high-voltage LiNi_(1/3)Mn1_(/3)Co_(1/3)O_(2)(1.5 mA h cm^(-2))|Li metal battery with it exhibited a capacity retention of more than 80%over a long-term cycle even at 0.45 m A cm^(-2)with a lean electrolyte(30μL).Meanwhile,for another FP family member(i.e.,3-FP)as the electrolyte additive,the 4.3 V LMBs with the carbonate-based electrolyte containing only 1%of 3-FP maintained 83.9%of initial capacity after 200 cycles at 0.75 m A cm^(-2).Density functional theory(DFT)calculations and experiments confirmed that three typical FPs,i.e.,2-FP,3-FP and 4-FP can not only regulate the initial Li nucleation process,but more importantly also induce a protective layer,leading to a uniform and dendrites-free Li deposition.This bifunction of the FP family member as either electrolyte solvent or additive in the electrolyte formulations should be promising for the achieving of dendrites-free high-energy density LMBs.展开更多
基金supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIT) (NRF-2022R1C1C1011058)supported by the Korea Institute for Advancement of Technology (KIAT)grant funded by the Korean Government (MOTIE) (P0012748,HRD Program for Industrial Innovation).
文摘Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the electrolyte volume generally produces low practical energy because of the limited electrochemical Li-S redox.Herein,the high energy/high performance of a Li-S full battery with practical sulfur loading and minimum electrolyte volume is reported.A unique hybrid architecture configured with Ni-Co metal alloy(NiCo)and metal oxide(NiCoO_(2))nanoparticles heterogeneously anchored in carbon nanotube-embedded selfstanding carbon matrix is fabricated as a host for sulfur.This work demonstrates the considerable improvement that the hybrid structure's high conductivity and satisfactory porosity promote the transport of electrons and lithium ions in Li-S batteries.Through experimental and theoretical validations,the function of NiCo and NiCoO_(2) nanoparticles as an efficient polysulfide mediator is established.These particles afford polysulfide anchoring and catalytic sites for Li-S redox reaction,thus improving the redox conversion reversibility.Even at high sulfur loading,the nanostructured Ni-Co metal alloy and metal oxide enable to have stable cycling performance under lean electrolyte conditions both in half-cell and full-cell batteries using a graphite anode.
基金the Research Foundation-Flanders (FWO) for a Research Project (G0B3218N)the financial support by the National Natural Science Foundation of China (22005054)+3 种基金Natural Science Foundation of Fujian Province (2021J01149)State Key Laboratory of Structural Chemistry (20200007)Sichuan Science and Technology Program (project No.: 2022ZYD0016 and 2023JDRC0013)the National Natural Science Foundation of China (project No. 21776120)。
文摘Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.52122308 and 52102318)Fellowship of China Postdoctoral Science Foundation(Nos.2021TQ0287 and 2022M722855)。
文摘The practical energy density of lithium-sulfur batteries(LSBs)is seriously limited by the high electrolyte-to-sulfur ratios(E/S).The E/S can be reduced by employing hosts with easy-to-infiltrate structure that ensures the uniform distribution of a lean electrolyte and high catalytic activity that can suppress"shuttle effect"via accelerating the slow conversion of soluble poly sulfides to insoluble sulfides.Among the easy-to-infiltrate structures,the three-dimensional-ordered macroporous(3DOM)structure is easier to scale preparation and more suitable for the existing industrial processes.However,it is difficult to obtain the 3DOM with(1)high penetrability due to the high viscosity of frequently-used organic polymer precursors and(2)high catalytic activity due to the low confinement effect,meaning that uniformly dispersed small-sized catalytic materials are difficult to load on 3DOM.Herein,using carbon dots(CDs)with both organic and inorganic properties as a precursor and aggregation limiting agent,a 3DOM host with high penetrability and homodispersed Ni particles of small sizes(Ni-CDs-3DOM)was synthesized.In this host:(1)CDs precursor with suitable viscosity can improve the penetrability.(2)CDs can effectively inhibit the agglomeration of Ni particles.(3)Uniformly dispersed small-size Ni particles offer high-efficiency catalytic activity toward sulfur reactions.Consequently,the Ni-CDs-3DOM/sulfur cathode exhibits high sulfur utilization and stable cycling performance even under high sulfur loading(5.5 mg·cm^(-2))and low E/S(6.5μl·mg^(-1)).This work indicates the usefulness of CDs in constructing hosts for LSBs with high energy density.
基金Jiangsu Provincial Department of Science and Technology,Grant/Award Number:BK20201190Fundamental Research Funds for“Young Talent Support Plan”of Xi'an Jiaotong University,Grant/Award Number:HG6J003+1 种基金“1000-Plan program”of Shaanxi Province and the Velux Foundations through the research center V-Sustain,Grant/Award Number:9455National Key R&D Program of China,。
文摘The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processes.Two-dimensional(2D)few layered black phosphorus with fully exposed atoms and high sulfur affinity can be potential lithium-sulfur battery electrocatalysts,which,however,have limitations of restricted catalytic activity and poor electrochemical/chemical stability.To resolve these issues,we developed a multifunctional metal-free catalyst by covalently bonding few layered black phosphorus nanosheets with nitrogen-doped carbon-coated multiwalled carbon nanotubes(denoted c-FBP-NC).The experimental characterizations and theoretical calculations show that the formed polarized P-N covalent bonds in c-FBP-NC can efficiently regulate electron transfer from NC to FBP and significantly promote the capture and catalysis of lithium polysulfides,thus alleviating the shuttle effect.Meanwhile,the robust 1D-2D interwoven structure with large surface area and high porosity allows strong physical confinement and fast mass transfer.Impressively,with c-FBP-NC as the sulfur host,the battery shows a high areal capacity of 7.69 mAh cm^(−2) under high sulfur loading of 8.74 mg cm^(−2) and a low electrolyte/sulfur ratio of 5.7μL mg^(−1).Moreover,the assembled pouch cell with sulfur loading of 4 mg cm^(−2) and an electrolyte/sulfur ratio of 3.5μL mg^(−1) shows good rate capability and outstanding cyclability.This work proposes an interfacial and electronic structure engineering strategy for fast and durable sulfur electrochemistry,demonstrating great potential in lithium-sulfur batteries.
基金Natural Science Foundation of Jiangxi Province,Grant/Award Numbers:20212BAB203031,20224ACB213001National Natural Science Foundation of China,Grant/Award Numbers:22008102,22269013,22263009The Natural Science Research Programs of Jiangxi Province,Grant/Award Numbers:20212BBE53051,20213BCJ22024。
文摘Efficient redox reactions of lean electrolyte lithium-sulfur(Li-S)batteries highly rely on rational catalyst design.Herein,we report an electrocatalyst based on N-doped carbon nanotubes(CNT)-encapsulated Ni nanoparticles(Ni@NCNT)as kinetics regulators for Li-S batteries to propel the polysulfide-involving multiphase transformation.Moreover,such a CNT-encapsulation strategy greatly prevents the aggregation of Ni nanoparticles and enables the extraordinary structural stability of the hybrid electrocatalyst,which guarantees its persistent catalytic activity on sulfur redox reactions.When used as a modified layer on a commercial separator,the Ni@NCNT interlayer contributes to stabilizing S cathode and Li anode by significantly retarding the shuttle effect.The corresponding batteries with a 3.5 mg cm^(−2)sulfur loading achieve the promising cycle stability with~85%capacity retention at the electrolyte/sulfur ratios of 5 and 3μL mg^(−1).Even at a high loading of 12.2 mg cm^(−2),the battery affords an areal capacity of 7.5 mA h cm^(−2).
基金supported by the National Natural Science Foundation of China(21805162 and 21671096)National Key Research and Development Program(2018YFB0104300)+3 种基金Key Program of the Natural Science Foundation of China(51732005)Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(2018B030322001)Shenzhen Key Laboratory of Solid State Batteries(No.ZDSYS201802081843465)Research Support for Postdoctoral Scholars coming to Shenzhen(K19407556)。
文摘Lithium-sulfur(Li-S)batteries possess overwhelming energy density of 2654 Wh kg-1,and are considered as the next-generation battery technology for energy demanding applications.Flooded electrolytes are ubiquitously employed in cells to ensure sufficient redox kinetics and preclude the interference of the electrolyte depletion due to side reactions with the lithium metal anode.This strategy is capable of enabling long-lasting,high-capacity and excellent-rate battery performances,but it mask the requirements of practical Li-S batteries,where high-sulfur-loading/content and lean electrolyte are prerequisite to realize the energy-dense Li-S batteries.Sparingly and highly solvating electrolytes have emerged as effective yet simple approaches to decrease the electrolyte/sulfur ratio through altering sulfur species and exerting new reaction pathways.Sparingly solvating electrolytes are characterized by few free solvents to solvate lithium polysulfides,rendering a quasi-solid sulfur conversion and decoupling the reaction mechanisms from electrolyte quantity used in cells;while highly solvating electrolytes adopt highdonicity or high-permittivity solvents and take their advantages of strong solvation ability toward polysulfide intermediates,thereby favoring the polysulfide formation and stabilizing unique radicals,which subsequently accelerate redox kinetics.Both solvation chemistry approaches have their respective features to allow the operation of cells under electrolyte-starved conditions.This Review discusses their unique features and basic physicochemical properties in the working Li-S batteries,presents remaining technical and scientific issues and provides future directions for the electrolyte chemistry to attain highenergy Li-S batteries.
基金the financial support provided by the National University of Singapore。
文摘While the sulfur conversion reaction kinetics in Li–S batteries is nowadays improved by the use of appropriate electrocatalysts,it remains a challenge for the batteries to perform well under the lean electrolyte condition where polysulfide shuttle,electrode passivation and the loss of electrolyte due to side reactions,are aggravated.These challenges are addressed in this study by the tandem use of a polysulfide conversion catalyst and a redox–targeting mediator in a gel sulfur cathode.Specifically,the gel cathode reduces the polysulfide mobility and hence the polysulfide shuttle and the passivation of the lithium anode by the crossover polysulfides.The redox mediator restrains the deposition of inactive sulfur species in the cathode thereby enabling the Fe–N and Co–N co–doped carbon catalyst to prolong its catalytic activity.Consequently,the integrated catalytic system is able to increase the discharge capacity of high–loading (6.8 mg cm^(-2)) lean–electrolyte (4.0μL mg^(-1)) Li–S batteries from~630 to~1316 m Ah g^(-1),concurrently with an improvement of the cycle life (600 cycles with 46%capacity retention at 1.0 m A cm^(-2)).Redox mediator assisted catalysis in a gel cathode is therefore an effective strategy to extend the application of the sulfur conversion catalyst in lean electrolyte Li–S batteries.
基金financially supported by the National Natural Science Foundation of China(21931005,21871177,20172012002)the Natural Science Foundation of Shanghai(20ZR1427600)the Shanghai Science and Technology Committee(19JC1412600)。
文摘An unstable solid electrolyte interphase(SEI)and chaotic lithium ion fux are key impediments to commercial high-energy-density lithium batteries because of the uncontrolled growth of rigid lithium dendrites,which would pierce through the conventional polypropylene(PP)separator,causing short circuit and safety issues.Herein,the homogenization of lithium ion fux and the generation of stable SEI layers on lithium anodes were achieved via coating a fuorine-functionalized Ti_(3)C_(2)(F-Ti_(3)C_(2))nanosheets on PP separator(F-Ti_(3)C_(2)@PP).F-Ti_(3)C_(2)nanosheets provide abundant ions pathways to homogeneously manipulate lithium ion fux and increase the Young’s modulus and electrolyte wettability of the separators.In addition,F species derived from the F-Ti_(3)C_(2)nanosheets would promote the formation of Li F-rich SEI film.The synergistic effect contribute to the uniform lithium deposition.Symmetric Li|Li,asymmetric Li|Cu and full Li|Li Fe PO4cells incorporated with the modified separators exhibit improved electrochemical performance even under lean electrolyte conditions.This work provides a feasible strategy to improve the performance of lithium batteries through both fuoridized SEI formation and lithium ion fux manipulation.
基金Office of Energy Efficiency and Renewable Energy,Grant/Award Number:DE‐FOA‐0001629U.S.Department of Energy,Grant/Award Number:DE‐AC02‐06CH11357。
文摘Tremendous effort has been devoted to lithium‐sulfur batteries,where flooded electrolytes have been employed ubiquitously.The use of lean electrolytes albeit indispensable for practical applications often causes low capacity and fast capacity fading of the sulfur cathode;thus,the electrolyte/sulfur active mass ratios below 5μL/mg have been rarely reported.Herein,we demonstrate that ZnS coating transforms sulfur cathode materials electrolyte‐philic,which tremendously promotes the performance in lean electrolytes.The ZnS‐coated Li2S@graphene cathode delivers an initial discharge capacity of 944mAh/g at an E/S ratio of 2μL/mg at the active mass loading of 5.0 mg Li2S/cm^2,corresponding to an impressive specific energy of 500Wh/kg based on the mass of cathode,electrolyte,and the assumed minimal mass of lithium metal anode.Density functional theory calculations reveal strong binding between ZnS crystals and electrolyte solvent molecules,explaining the better wetting properties.We also demonstrate the reversible cycling of a hybrid cathode of ZnS‐coated Li2S@graphene mixed with VS2 as an additive at an E/AM(active mass)ratio of 1.1μL/mg,equivalent to the specific energy of 432 Wh/kg on the basis of the mass of electrodes and electrolyte.
基金M.W.and J.S.L.acknowledge the Research Foundation-Flanders(FWO)for a Research Project(No.G0B3218N)and a Research Grant(No.1529816N)J.S.L.,Z.B.C.,and M.W.acknowledge the financial support by the National Natural Science Foundation of China(Nos.21776120 and 22005054)H.P.is grateful to the China Scholarship Council.Funding from State Key Laboratory of Structural Chemistry,and the Natural Science Foundation of Fujian Province(No.2021J01149)is also acknowledged.
文摘High sulphur loading and lean electrolyte conditions are important to achieve the high theoretical energy density of lithiumsulphur(Li-S)batteries.However,serious problems such as low sulphur utilization and fast capacity fade are typically experienced under low electrolyte/sulphur(E/S)ratios and high sulphur loading conditions.To address these issues,a cobaltcontaining three-dimensional conductive honeycomb(Co@N-HPC)is proposed in this work as a material for sulphur cathodes.The good electrical conductivity and high density of catalytic sites of(Co@N-HPC)allow fast redox kinetics of lithium polysulfide(LiPS)in high-sulphur-loading electrodes.In addition,the hierarchical structure and good wettability by the electrolyte of Co@NHPC facilitates electrolyte penetration and LiPS conversion,leading to a high utilization of sulphur under lean electrolyte conditions.Therefore,at a current density of 0.2 C,a volumetric capacity of 1,410 mAh·cm^(−3)was attained with a sulphur loading of 5.1 mg·cm^(−2)and an E/S ratio of 5μL·mg^(−1).This work provides ideas for the development of lean electrolyte Li-S batteries with a high sulphur loading.
基金supported by National Nature Science Foundation of China(NSFC22078228)。
文摘Lean electrolyte usage in lithium–sulfur battery(LSB)meets the demand of the high energy density.However,lean condition makes the electrolyte-related interface discrete,leading to retardation of ion transfer that depends on interfaces.Consequently,electrochemical reactions face restraint.Herein,lithium polyacrylate acid(LiPAA)with short-chain anions(molecular weight of 2000)is introduced into the cathode.Because of the polysulfide(PS)-philic instinct of the short-chain PAA anions,short-chain PS is captured inside of the cathode.In addition,LiPAA supplies Li^(+)to the short-chain PS captured.The strong interaction between Li_(2)S_(4)and LiPAA effectively decreases Li_(2)S_(4)migration to the anode during discharging.In a sense,the ion mass transfer pattern is thus changed comparing to traditional long-way mode between cathode and anode.Galvanostatic intermittent titration technique(GITT)proves that the interfacial reaction resistance is greatly decreased in the region where Li_(2)S_(x)(x≤4)reduction contributes most.In the same time,the reversibility of electrochemical reduction/oxidation is improved.Owing to the accelerated Li_(2)S_(x)(x≤4)reduction,Li implanting of only 0.3 wt.%plus O introduction up to 1.4 wt.%enables the LSB perform well even with 1/4 of regular electrolyte dosage(5μL mg^(-1))and high-sulfur loading(4.2 mg cm^(-2)),increasing its rate capacity C_(0.8/0.5)from 52.6%(without the LiPAA)to 92.3%(with the LiP AA)as well as a capacity of 518.7 mAh g^(-1)after 400 cycles at 0.8 mA cm^(-2).
基金supported by the National Natural Science Foundation of China (21975087, U1966214, 22008082)the Certificate of China Postdoctoral Science Foundation Grant (2019M652634,2020M672337)。
文摘The mass fraction of electrolytes is the crucial factor affecting the energy density of lithium-sulfur(Li-S)batteries. Due to the high porosity within the C/S cathode, high concentration of polysulfides, and side reaction in lithiun metal anode under lean electrolyte, it is extremely challenging to improve performance while reducing the electrolyte volume. Here, we report a novel electrolyte with relatively low density(1.16 g cm^(-2)), low viscosity(1.84 m Pa s), and high ionic conductivity, which significantly promotes energy density and cyclability of Li-S batteries under practical conditions. Moreover, such electrolyte enables a hybrid cathode electrolyte interphase(CEI) and solid electrolyte interface(SEI) layer with plentiful Li F, which leads to fast kinetics of ions transport and stable cyclability even under low temperatures.Compared to Li-S batteries in electrolyte employing 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether(TTE) diluent, the ultra-thick cathode(20 mg cm^(-2)) shows a high capacity of 9.48 m Ah cm^(-2)and excellent capacity retention of 80.3% over 191 cycles at a low electrolyte-to-sulfur ratio(E/S = 2) and negative-to-positive capacity ratio(N/P = 2.5), realizing a 19.2% improvement in energy density in coin cells(from 370 to 441 Wh kg^(-1)) and a high energy density up to 467 Wh kg^(-1) in pouch cells. This study not only provides guidance for the electrolyte design but also paves the way for the development of high performance Li-S batteries under practical conditions.
基金supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region,China(Poly U25216121,Poly U15303219)the National Natural Science Foundation of China for Young Scholar(52102310)the Research Committee of the Hong Kong Polytechnic University(A-PB1 M,1-BBXK,1-CD4 M,and G-UAMV)。
文摘High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation conditions reveals a huge gap between the demands for practical batteries and those in the literature.Low sulfur loading,a high electrolyte/sulfur(E/S)ratio and excess anodes for lab-scale LSBs significantly offset their high-energy merit.To approach practical LSBs,high loading and lean electrolyte parameters are needed,which involve budding challenges of slow charge transfer,polysulfide precipitation and severe shuttle effects.To track these obstacles,the exploration of electrocatalysts to immobilize polysulfides and accelerate Li-S redox kinetics has been widely reported.Herein,this review aims to survey state-of-the-art catalytic materials for practical LSBs with emphasis on elucidating the correlation among catalyst design strategies,material structures and electrochemical performance.We also statistically evaluate the state-of-the-art catalyst-modified LSBs to identify the remaining discrepancy between the current advancements and the real-world requirements.In closing,we put forward our proposal for a catalytic material study to help realize practical LSBs.
基金The authors acknowledge the support from the National Natural Science Foundation of China(Nos.U2002213 and 51972219)the Science and Technology Development Fund Macao SAR(No.0077/2021/A2),the Collaborative Innovation Center of Suzhou Nano Science and Technology,the 111 Project,and the Joint International Research Laboratory of Carbon-based Functional Materials and Devices.
文摘Lithium-sulfur(Li-S)batteries hold great promise to be the next-generation candidate for high-energy-density secondary batteries but in the prerequisite of using low electrolyte-to-sulfur(E/S)ratios.Highly solvating electrolytes(HSEs)and sparingly solvating electrolytes(SSEs),with opposite nature towards the dissolution of polysulfides,have recently emerged as two effective solutions to decrease the E/S ratio and increase the overall practical energy density of Li-S batteries.HSEs featuring with high polysulfide solvation ability have the potential to reduce the E/S ratio by dissolving more polysulfides with less electrolyte,while SSEs alter the sulfur reaction pathway from a dissolution-precipitation mechanism to a quasi-solid mechanism,thereby independent on the use of electrolyte amount.Both HSEs and SSEs show respective effectiveness in lean-electrolyte Li-S batteries,but encounter different challenges to bring Li-S batteries into practical application.This review aims to present a comparative discussion on their unique features and basic electrochemical reaction mechanisms in practical lean-electrolyte Li-S batteries.Emphasis is focused on the current technical challenges and possible solutions for their future development.
基金supported by National Key Research and Development Program(No.2016YFA0202500)National Natural Science Foundation of China(Nos.21776019,21808124)Beijing Natural Science Foundation(No.L182021)。
文摘Lithium(Li) metal,possessing an extremely high theoretical specific capacity(3860 mAh/g) and the most negative electrode potential(-3.040 V vs.standard hydrogen electrode),is one the most favorable anode materials for future high-energy-density batteries.However,the poor cyclability and safety issues induced by extremely unstable interfaces of traditional liquid Li metal batteries have limited their practical applications.Herein,a quasi-solid battery is constructed to offer superior interfacial stability as well as excellent interfacial contact by the incorporation of Li@composite solid electrolyte integrated electrode and a limited amount of liquid electrolyte(7.5 μL/cm2).By combining the inorganic garnet Aldoped Li6.75La3Zr1.75Ta0.25O12(LLZO) with high mechanical strength and ionic conductivity and the o rganic ethylene-vinyl acetate copolymer(EVA) with good flexibility,the composite solid electrolyte film could provide sufficient ion channels,sustained interfacial contact and good mechanical stability at the anode side,which significantly alleviates the thermodynamic corrosion and safety problems induced by liquid electrolytes.This innovative and facile quasi-solid strategy is aimed to promote the intrinsic safety and stability of working Li metal anode,shedding light on the development of next-generation highperformance Li metal batteries.
文摘Electrolyte formulation with high stability towards both Li metal anode and high-voltage cathode is considered as one of key points for the high-energy density lithium metal batteries(LMBs).In our previous study,by adding only 2%of 2-fluoropyridine(2-FP)as the additive in the carbonate and ether-based electrolyte formulations effectively suppressed Li dendrite growth.In this study,we further found that the main fluoropyridine(FP)family members can serve as not only the effective additive but also the excellent electrolyte solvent in the electrolyte formulations to enhance the performance of LMBs.For the 2-FP,when it was also used the electrolyte solvent and paired with single-salt lithium bis(trifluoromethylsulfonyl)imide(Li TFSI),the obtained electrolyte formulation of 1 M Li TFSI in pure2-FP solvent not only allowed faster ion transport though solvation effect,but also possessed impressive oxidation stability window over 4.3 V.As a result,the high-voltage LiNi_(1/3)Mn1_(/3)Co_(1/3)O_(2)(1.5 mA h cm^(-2))|Li metal battery with it exhibited a capacity retention of more than 80%over a long-term cycle even at 0.45 m A cm^(-2)with a lean electrolyte(30μL).Meanwhile,for another FP family member(i.e.,3-FP)as the electrolyte additive,the 4.3 V LMBs with the carbonate-based electrolyte containing only 1%of 3-FP maintained 83.9%of initial capacity after 200 cycles at 0.75 m A cm^(-2).Density functional theory(DFT)calculations and experiments confirmed that three typical FPs,i.e.,2-FP,3-FP and 4-FP can not only regulate the initial Li nucleation process,but more importantly also induce a protective layer,leading to a uniform and dendrites-free Li deposition.This bifunction of the FP family member as either electrolyte solvent or additive in the electrolyte formulations should be promising for the achieving of dendrites-free high-energy density LMBs.