In this paper, the prospect and advantages of applying prospect and advantages to the production and operation of China' s small and medimn-sized apparel enterprises, the main waste parts in the apparel production an...In this paper, the prospect and advantages of applying prospect and advantages to the production and operation of China' s small and medimn-sized apparel enterprises, the main waste parts in the apparel production and operation process are systematically analyzed, an efficient production, management, and operation model meeting the characteristics of the small and medium-sized apparel enterprises is explored according to the solutions in lean management, and also the technical transformation in the key positions is fully implemented, so that the production efficiency of the sewing workshop is improved, the bottlenecks of the backward production management way to restrict the development of enterprises are broken, the vitality of the enterprises is restored, and also significant economic and social benefits are achieved.展开更多
Three-dimensional models, consisting of the flame kernel formation model, flame kernel development model and natural gas single step reaction model, are used to analyze the contribution of cyclic equivalence ratio var...Three-dimensional models, consisting of the flame kernel formation model, flame kernel development model and natural gas single step reaction model, are used to analyze the contribution of cyclic equivalence ratio variations to cyclic variations in the compressed natural gas (CNG) lean burn spark ignition engine. Computational results including the contributions of equivalence ratio cyclic variations to each combustion stage and effects of engine speed to the extent of combustion variations are discussed. It is concluded that the equivalence ratio variations affect mostly the main stage of combustion and hardly influence initial kernel development stage.展开更多
The Response Surface Methodology (RSM) has been applied to explore the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 and...The Response Surface Methodology (RSM) has been applied to explore the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 and Pd/γAl2O3 disc burners were situated in the combustion domain and the experiments were performed under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (ø) of 0.75 and 0.25 respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners were inspected via measuring the mean temperature profiles in the radial direction at different discrete axial locations along the flames. The RSM considers the effect of the two operating parameters explicitly (r), the radial distance from the center line of the flame, and (x), axial distance along the flame over the disc, on the measured temperature of the flames and finds the predicted maximum temperature and the corresponding process variables. Also the RSM has been employed to elucidate such effects in the three and two dimensions and displays the location of the predicted maximum temperature.展开更多
Modeling, predictive and generalization capabilities of response surface methodology (RSM) and artificial neural network (ANN) have been performed to assess the thermal structure of the experimentally studied cat...Modeling, predictive and generalization capabilities of response surface methodology (RSM) and artificial neural network (ANN) have been performed to assess the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/<i>γ</i>Al<sub>2</sub>O<sub>3</sub> and Pd/<i>γ</i>Al<sub>2</sub>O<sub>3</sub> disc burners were located in the combustion domain and the experiments were accomplished under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (<i><span style="white-space:nowrap;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">ø</span></span></i>) of 0.75 and 0.25, respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners w<span style="white-space:normal;font-family:;" "="">as</span><span style="white-space:normal;font-family:;" "=""> scrutinized via measuring the mean temperature profiles in the radial direction at different discrete axial locations along with the flames. The RSM and ANN methods investigated the effect of the two operating parameters namely (<i>r</i>), the radial distance from the center line of the flame, and (<i>x</i>), axial distance along with the flame over the disc, on the measured temperature of the flames and predicted the corresponding temperatures beside predicting the maximum temperature and the corresponding input process variables. A three</span><span style="white-space:normal;font-family:;" "="">-</span><span style="white-space:normal;font-family:;" "="">layered Feed Forward Neural Network was developed in conjugation with the hyperbolic tangent sigmoid (tansig) transfer function and an optimized topology of 2:10:1 (input neurons:hidden neurons:output neurons). Also the ANN method has been exploited to illustrate </span><span style="white-space:normal;font-family:;" "="">the </span><span style="white-space:normal;font-family:;" "="">effects of coded <i>R</i> and <i>X</i> input variables on the response in the three and two dimensions and to locate the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of & F_Ratio are 0.9181</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 0.9809 & 634.5</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 3528.8 for RSM method compared to 0.9857</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 0.9951 & 7636.4</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 24</span><span style="white-space:normal;font-family:;" "="">,</span><span style="white-space:normal;font-family:;" "="">028.4 for ANN method beside lower values </span><span style="white-space:normal;font-family:;" "="">for error analysis terms.</span>展开更多
文摘In this paper, the prospect and advantages of applying prospect and advantages to the production and operation of China' s small and medimn-sized apparel enterprises, the main waste parts in the apparel production and operation process are systematically analyzed, an efficient production, management, and operation model meeting the characteristics of the small and medium-sized apparel enterprises is explored according to the solutions in lean management, and also the technical transformation in the key positions is fully implemented, so that the production efficiency of the sewing workshop is improved, the bottlenecks of the backward production management way to restrict the development of enterprises are broken, the vitality of the enterprises is restored, and also significant economic and social benefits are achieved.
基金Sponsored by the National Natural Science Foundation of China(50406003)
文摘Three-dimensional models, consisting of the flame kernel formation model, flame kernel development model and natural gas single step reaction model, are used to analyze the contribution of cyclic equivalence ratio variations to cyclic variations in the compressed natural gas (CNG) lean burn spark ignition engine. Computational results including the contributions of equivalence ratio cyclic variations to each combustion stage and effects of engine speed to the extent of combustion variations are discussed. It is concluded that the equivalence ratio variations affect mostly the main stage of combustion and hardly influence initial kernel development stage.
文摘The Response Surface Methodology (RSM) has been applied to explore the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 and Pd/γAl2O3 disc burners were situated in the combustion domain and the experiments were performed under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (ø) of 0.75 and 0.25 respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners were inspected via measuring the mean temperature profiles in the radial direction at different discrete axial locations along the flames. The RSM considers the effect of the two operating parameters explicitly (r), the radial distance from the center line of the flame, and (x), axial distance along the flame over the disc, on the measured temperature of the flames and finds the predicted maximum temperature and the corresponding process variables. Also the RSM has been employed to elucidate such effects in the three and two dimensions and displays the location of the predicted maximum temperature.
文摘Modeling, predictive and generalization capabilities of response surface methodology (RSM) and artificial neural network (ANN) have been performed to assess the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/<i>γ</i>Al<sub>2</sub>O<sub>3</sub> and Pd/<i>γ</i>Al<sub>2</sub>O<sub>3</sub> disc burners were located in the combustion domain and the experiments were accomplished under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (<i><span style="white-space:nowrap;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">ø</span></span></i>) of 0.75 and 0.25, respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners w<span style="white-space:normal;font-family:;" "="">as</span><span style="white-space:normal;font-family:;" "=""> scrutinized via measuring the mean temperature profiles in the radial direction at different discrete axial locations along with the flames. The RSM and ANN methods investigated the effect of the two operating parameters namely (<i>r</i>), the radial distance from the center line of the flame, and (<i>x</i>), axial distance along with the flame over the disc, on the measured temperature of the flames and predicted the corresponding temperatures beside predicting the maximum temperature and the corresponding input process variables. A three</span><span style="white-space:normal;font-family:;" "="">-</span><span style="white-space:normal;font-family:;" "="">layered Feed Forward Neural Network was developed in conjugation with the hyperbolic tangent sigmoid (tansig) transfer function and an optimized topology of 2:10:1 (input neurons:hidden neurons:output neurons). Also the ANN method has been exploited to illustrate </span><span style="white-space:normal;font-family:;" "="">the </span><span style="white-space:normal;font-family:;" "="">effects of coded <i>R</i> and <i>X</i> input variables on the response in the three and two dimensions and to locate the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of & F_Ratio are 0.9181</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 0.9809 & 634.5</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 3528.8 for RSM method compared to 0.9857</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 0.9951 & 7636.4</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 24</span><span style="white-space:normal;font-family:;" "="">,</span><span style="white-space:normal;font-family:;" "="">028.4 for ANN method beside lower values </span><span style="white-space:normal;font-family:;" "="">for error analysis terms.</span>