BACKGROUND A new nomenclature consensus has emerged for liver diseases that were previously known as non-alcoholic fatty liver disease(NAFLD)and metabolic dysfunction-associated fatty liver disease(MAFLD).They are now...BACKGROUND A new nomenclature consensus has emerged for liver diseases that were previously known as non-alcoholic fatty liver disease(NAFLD)and metabolic dysfunction-associated fatty liver disease(MAFLD).They are now defined as metabolic dysfunction-associated steatotic liver disease(MASLD),which includes cardiometabolic criteria in adults.This condition,extensively studied in obese or overweight patients,constitutes around 30%of the population,with a steady increase worldwide.Lean patients account for approximately 10%-15%of the MASLD population.However,the pathogenesis is complex and is not well understood.AIM To systematically review the literature on the diagnosis,pathogenesis,characteristics,and prognosis in lean MASLD patients and provide an interpretation of these new criteria.METHODS We conducted a comprehensive database search on PubMed and Google Scholar between January 2012 and September 2023,specifically focusing on lean NAFLD,MAFLD,or MASLD patients.We include original articles with patients aged 18 years or older,with a lean body mass index categorized according to the World Health Organization criteria,using a cutoff of 25 kg/m2 for the general population and 23 kg/m2 for the Asian population.RESULTS We include 85 studies in our analysis.Our findings revealed that,for lean NAFLD patients,the prevalence rate varied widely,ranging from 3.8%to 34.1%.The precise pathogenesis mechanism remained elusive,with associations found in genetic variants,epigenetic modifications,and adaptative metabolic response.Common risk factors included metabolic syndrome,hypertension,and type 2 diabetes mellitus,but their prevalence varied based on the comparison group involving lean patients.Regarding non-invasive tools,Fibrosis-4 index outperformed the NAFLD fibrosis score in lean patients.Lifestyle modifications aided in reducing hepatic steatosis and improving cardiometabolic profiles,with some medications showing efficacy to a lesser extent.However,lean NAFLD patients exhibited a worse prognosis compared to the obese or overweight counterpart.CONCLUSION MASLD is a complex disease comprising epigenetic,genetic,and metabolic factors in its pathogenesis.Results vary across populations,gender,and age.Limited data exists on clinical practice guidelines for lean patients.Future studies employing this new nomenclature can contribute to standardizing and generalizing results among lean patients with steatotic liver disease.展开更多
Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the el...Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the electrolyte volume generally produces low practical energy because of the limited electrochemical Li-S redox.Herein,the high energy/high performance of a Li-S full battery with practical sulfur loading and minimum electrolyte volume is reported.A unique hybrid architecture configured with Ni-Co metal alloy(NiCo)and metal oxide(NiCoO_(2))nanoparticles heterogeneously anchored in carbon nanotube-embedded selfstanding carbon matrix is fabricated as a host for sulfur.This work demonstrates the considerable improvement that the hybrid structure's high conductivity and satisfactory porosity promote the transport of electrons and lithium ions in Li-S batteries.Through experimental and theoretical validations,the function of NiCo and NiCoO_(2) nanoparticles as an efficient polysulfide mediator is established.These particles afford polysulfide anchoring and catalytic sites for Li-S redox reaction,thus improving the redox conversion reversibility.Even at high sulfur loading,the nanostructured Ni-Co metal alloy and metal oxide enable to have stable cycling performance under lean electrolyte conditions both in half-cell and full-cell batteries using a graphite anode.展开更多
The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processe...The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processes.Two-dimensional(2D)few layered black phosphorus with fully exposed atoms and high sulfur affinity can be potential lithium-sulfur battery electrocatalysts,which,however,have limitations of restricted catalytic activity and poor electrochemical/chemical stability.To resolve these issues,we developed a multifunctional metal-free catalyst by covalently bonding few layered black phosphorus nanosheets with nitrogen-doped carbon-coated multiwalled carbon nanotubes(denoted c-FBP-NC).The experimental characterizations and theoretical calculations show that the formed polarized P-N covalent bonds in c-FBP-NC can efficiently regulate electron transfer from NC to FBP and significantly promote the capture and catalysis of lithium polysulfides,thus alleviating the shuttle effect.Meanwhile,the robust 1D-2D interwoven structure with large surface area and high porosity allows strong physical confinement and fast mass transfer.Impressively,with c-FBP-NC as the sulfur host,the battery shows a high areal capacity of 7.69 mAh cm^(−2) under high sulfur loading of 8.74 mg cm^(−2) and a low electrolyte/sulfur ratio of 5.7μL mg^(−1).Moreover,the assembled pouch cell with sulfur loading of 4 mg cm^(−2) and an electrolyte/sulfur ratio of 3.5μL mg^(−1) shows good rate capability and outstanding cyclability.This work proposes an interfacial and electronic structure engineering strategy for fast and durable sulfur electrochemistry,demonstrating great potential in lithium-sulfur batteries.展开更多
The effects of nano-CaO contents on the microstructure,mechanical properties and corrosion resistance of lean Mg-1Zn alloy were investigated.The results showed that the addition of nano-CaO significantly refined the g...The effects of nano-CaO contents on the microstructure,mechanical properties and corrosion resistance of lean Mg-1Zn alloy were investigated.The results showed that the addition of nano-CaO significantly refined the grain size and improved mechanical properties of the Mg-1Zn alloy.At the same time,CaO reacted with molten Mg in situ to form nano-MgO,whose corrosion product in SBF solution was the same with the degradation product of Mg matrix,resulting in the enhanced compactness of the Mg(OH)_(2) layer and reduced corrosion rate of matrix.The Mg-1Zn alloy had lower corrosion resistance due to excessively large grain size and shedding of corrosion products.The composite with 0.5 wt.%CaO had the best corrosion resistance with a weight loss of 9.875 mg·y^(-1)·mm^(-2)due to the small number of Ca_(2)Mg_(6)Zn_(3) phase and suitable grain size.While for composites with high content of CaO(0.7 wt.%and 1.0 wt.%),they had lower corrosion resistance due to the coexistence of large number of Ca_(2)Mg_(6)Zn_(3) and Mg_(2)Ca at grain boundaries,especially for 1.0 wt.%CaO composite,resulting from the strong micro-galvanic corrosion.展开更多
In contemporary contexts,Lean Six Sigma(LSS)is extensively utilized and has evolved across various sectors due to its substantial benefits.This paper aims to explore the definition,origin,and development of LSS,as wel...In contemporary contexts,Lean Six Sigma(LSS)is extensively utilized and has evolved across various sectors due to its substantial benefits.This paper aims to explore the definition,origin,and development of LSS,as well as its key tools,methods,theoretical research,and future prospects.Furthermore,it analyzes the theoretical foundations and practical applications of LSS in-depth,with an emphasis on anticipating future development trends.The goal is to provide readers with a comprehensive overview of LSS and offer insights for enterprises seeking to implement LSS for process improvement and innovation.展开更多
Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyze...Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries.展开更多
This paper presents a study on the design strategy of leaning-type arch bridges.The main characteristics of leaning-type arch bridges are first introduced;Kunshan Yufeng Bridge is taken as an example to discuss differ...This paper presents a study on the design strategy of leaning-type arch bridges.The main characteristics of leaning-type arch bridges are first introduced;Kunshan Yufeng Bridge is taken as an example to discuss different aspects of a design strategy,which includes self-system optimization,selection of beam length and bridge deck position,and other aspects.This paper can be used as a reference to further improve and develop bridge design.展开更多
TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties ...TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties of the catalysts were studied by N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,ultraviolet-visible spectroscopy,H2 temperature-programmed reduction and Fourier transform infrared spectroscopy.TiO2/γ-Al2O3 supported In/Ag is a good catalyst for the reduction of NO to N2.It displayed high dispersion,large amounts of surface active components and high NO adsorption capacity,which gave good catalytic performance and stability for the reduction of NO with CO under lean burn conditions.The silver species stabilized and improved the dispersion of the indium species.The introduction of TiO2 into the γ-Al2O3 support promoted NO adsorption and improved the dispersion of the indium species and silver species.展开更多
The prevalence of metabolic-associated fatty liver disease(MAFLD)has increased substantially in recent years because of the global obesity pandemic.MAFLD,now recognized as the number one cause of chronic liver disease...The prevalence of metabolic-associated fatty liver disease(MAFLD)has increased substantially in recent years because of the global obesity pandemic.MAFLD,now recognized as the number one cause of chronic liver disease in the world,not only increases liver-related morbidity and mortality among sufferers but also worsens the complications associated with other comorbid conditions such as cardiovascular disease,type 2 diabetes mellitus,obstructive sleep apnoea,lipid disorders and sarcopenia.Understanding the interplay between MAFLD and these comorbidities is important to design optimal therapeutic strategies.Sarcopenia can be either part of the disease process that results in MAFLD(e.g.,obesity or adiposity)or a consequence of MAFLD,especially in the advanced stages such as fibrosis and cirrhosis.Sarcopenia can also worsen MAFLD by reducing exercise capacity and by the production of various muscle-related chemical factors.Therefore,it is crucial to thoroughly understand how we deal with these diseases,especially when they coexist.We explore the pathobiological interlinks between MAFLD and sarcopenia in this comprehensive clinical update review article and propose evidence-based therapeutic strategies to enhance patient care.展开更多
Background Pediatric cancer survivors are at increased risk of muscle weakness and low areal bone mineral density(aBMD).However,the prevalence of muscle strength deficits is not well documented,and the associations of...Background Pediatric cancer survivors are at increased risk of muscle weakness and low areal bone mineral density(aBMD).However,the prevalence of muscle strength deficits is not well documented,and the associations of muscle strength with aBMD are unknown in this population.Therefore,this study aimed to investigate the prevalence of upper-and lower-body muscle strength deficits and to examine the associations of upper-and lower-body muscle strength with age-,sex,and race-specific aBMD Z-scores at the total body,total hip,femoral neck,and lumbar spine.Methods This cross-sectional study included 116 pediatric cancer survivors(12.1±3.3 years old,mean±SD;42.2%female).Upper-and lower-body muscle strength were assessed by handgrip and standing long jump test,respectively.Dual‑energy X‑ray absorptiometry was used to measure aBMD(g/cm2).Associations between muscle strength and aBMD were evaluated in multivariable linear regression models.Logistic regression was used to evaluate the contribution of muscle strength(1-decile lower)to the odds of having low aBMD(Z-score≤1.0).All analyses were adjusted for time from treatment completion,radiotherapy exposure,and body mass index.Results More than one-half of survivors were within the 2 lowest deciles for upper-(56.9%)and lower-body muscle strength(60.0%)in comparison to age-and sex-specific reference values.Muscle strength deficits were associated with lower aBMD Z-scores at all sites(B=0.133–0.258,p=0.001–0.032).Each 1-decile lower in upper-body muscle strength was associated with 30%–95%higher odds of having low aBMD Z-scores at all sites.Each 1-decile lower in lower-body muscle strength was associated with 35%–70%higher odds of having low aBMD Z-scores at total body,total hip,and femoral neck.Conclusion Muscle strength deficits are prevalent in young pediatric cancer survivors,and such deficits are associated with lower aBMD Z-scores at all sites.These results suggest that interventions designed to improve muscle strength in this vulnerable population may have the added benefit of improving aBMD.展开更多
The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor...The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor design is required to resolve the idle LBO issue.The authors detailed a practical and efficient solu⁃tion,which not only solved the idle LBO issue but also defined the aero-thermal design for high-FAR combustor.The design will usher in a new era of aero combustor.展开更多
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d...Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.展开更多
BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is one of the most common chronic diseases in the world.Nowadays,the percentage of non-obese or lean patients with NAFLD is increasing.NAFLD in non-obese populations,e...BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is one of the most common chronic diseases in the world.Nowadays,the percentage of non-obese or lean patients with NAFLD is increasing.NAFLD in non-obese populations,especially the lean subgroup with a normal waist circumference(WC),might lead to more problems than obese individuals,as these individuals may not visit clinics for NAFLD diagnosis or ignore the diagnosis of NAFLD.If the precise characteristics of these populations,especially the lean subgroup,are identified,the clinicians would be able to provide more appropriate advice and treatment to these populations.AIM To investigate the prevalence,clinical characteristics,risk factors,and possible indicators for NAFLD in lean Chinese adults with a normal WC.METHODS People without diabetes mellitus or significant alcohol consumption who underwent routine health examinations were included.Their fatty liver index(FLI),abdominal ultrasonography results,and controlled attenuation parameter were all assessed.Genotyping for single-nucleotide polymorphisms associated with NAFLD was performed in another small group consisting of biopsy-proven NAFLD subjects and healthy controls.RESULTS A total of 2715 subjects who underwent routine health examinations were included in the study.Among 810 lean participants with a normal WC,142(17.5%)fulfilled the diagnostic criteria for NAFLD.Waist-height ratio,hemoglobin,platelets,and triglycerides were significant factors associated with the presence of NAFLD in these participants.The appropriate cut-off value of the FLI score in screening for NAFLD in the lean subjects with a normal WC was 25.15,which had a 77.8%sensitivity and 75.9%specificity.There was no significant difference in the single-nucleotide polymorphisms in the SIRT1,APOC3,PNPLA3,AGTR1,and PPARGC1A genes between lean subjects with and without NAFLD(P<0.05).CONCLUSION NAFLD is not uncommon in lean Chinese adults even with a normal WC.Metabolic factors,rather than genetic factors,may play important roles in the development of NAFLD in this population.A lower cut-off value of the FLI score in screening for NAFLD should be used for lean Chinese adults with a normal WC.展开更多
Lithium-sulfur(Li-S)batteries possess overwhelming energy density of 2654 Wh kg-1,and are considered as the next-generation battery technology for energy demanding applications.Flooded electrolytes are ubiquitously em...Lithium-sulfur(Li-S)batteries possess overwhelming energy density of 2654 Wh kg-1,and are considered as the next-generation battery technology for energy demanding applications.Flooded electrolytes are ubiquitously employed in cells to ensure sufficient redox kinetics and preclude the interference of the electrolyte depletion due to side reactions with the lithium metal anode.This strategy is capable of enabling long-lasting,high-capacity and excellent-rate battery performances,but it mask the requirements of practical Li-S batteries,where high-sulfur-loading/content and lean electrolyte are prerequisite to realize the energy-dense Li-S batteries.Sparingly and highly solvating electrolytes have emerged as effective yet simple approaches to decrease the electrolyte/sulfur ratio through altering sulfur species and exerting new reaction pathways.Sparingly solvating electrolytes are characterized by few free solvents to solvate lithium polysulfides,rendering a quasi-solid sulfur conversion and decoupling the reaction mechanisms from electrolyte quantity used in cells;while highly solvating electrolytes adopt highdonicity or high-permittivity solvents and take their advantages of strong solvation ability toward polysulfide intermediates,thereby favoring the polysulfide formation and stabilizing unique radicals,which subsequently accelerate redox kinetics.Both solvation chemistry approaches have their respective features to allow the operation of cells under electrolyte-starved conditions.This Review discusses their unique features and basic physicochemical properties in the working Li-S batteries,presents remaining technical and scientific issues and provides future directions for the electrolyte chemistry to attain highenergy Li-S batteries.展开更多
文摘BACKGROUND A new nomenclature consensus has emerged for liver diseases that were previously known as non-alcoholic fatty liver disease(NAFLD)and metabolic dysfunction-associated fatty liver disease(MAFLD).They are now defined as metabolic dysfunction-associated steatotic liver disease(MASLD),which includes cardiometabolic criteria in adults.This condition,extensively studied in obese or overweight patients,constitutes around 30%of the population,with a steady increase worldwide.Lean patients account for approximately 10%-15%of the MASLD population.However,the pathogenesis is complex and is not well understood.AIM To systematically review the literature on the diagnosis,pathogenesis,characteristics,and prognosis in lean MASLD patients and provide an interpretation of these new criteria.METHODS We conducted a comprehensive database search on PubMed and Google Scholar between January 2012 and September 2023,specifically focusing on lean NAFLD,MAFLD,or MASLD patients.We include original articles with patients aged 18 years or older,with a lean body mass index categorized according to the World Health Organization criteria,using a cutoff of 25 kg/m2 for the general population and 23 kg/m2 for the Asian population.RESULTS We include 85 studies in our analysis.Our findings revealed that,for lean NAFLD patients,the prevalence rate varied widely,ranging from 3.8%to 34.1%.The precise pathogenesis mechanism remained elusive,with associations found in genetic variants,epigenetic modifications,and adaptative metabolic response.Common risk factors included metabolic syndrome,hypertension,and type 2 diabetes mellitus,but their prevalence varied based on the comparison group involving lean patients.Regarding non-invasive tools,Fibrosis-4 index outperformed the NAFLD fibrosis score in lean patients.Lifestyle modifications aided in reducing hepatic steatosis and improving cardiometabolic profiles,with some medications showing efficacy to a lesser extent.However,lean NAFLD patients exhibited a worse prognosis compared to the obese or overweight counterpart.CONCLUSION MASLD is a complex disease comprising epigenetic,genetic,and metabolic factors in its pathogenesis.Results vary across populations,gender,and age.Limited data exists on clinical practice guidelines for lean patients.Future studies employing this new nomenclature can contribute to standardizing and generalizing results among lean patients with steatotic liver disease.
基金supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIT) (NRF-2022R1C1C1011058)supported by the Korea Institute for Advancement of Technology (KIAT)grant funded by the Korean Government (MOTIE) (P0012748,HRD Program for Industrial Innovation).
文摘Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the electrolyte volume generally produces low practical energy because of the limited electrochemical Li-S redox.Herein,the high energy/high performance of a Li-S full battery with practical sulfur loading and minimum electrolyte volume is reported.A unique hybrid architecture configured with Ni-Co metal alloy(NiCo)and metal oxide(NiCoO_(2))nanoparticles heterogeneously anchored in carbon nanotube-embedded selfstanding carbon matrix is fabricated as a host for sulfur.This work demonstrates the considerable improvement that the hybrid structure's high conductivity and satisfactory porosity promote the transport of electrons and lithium ions in Li-S batteries.Through experimental and theoretical validations,the function of NiCo and NiCoO_(2) nanoparticles as an efficient polysulfide mediator is established.These particles afford polysulfide anchoring and catalytic sites for Li-S redox reaction,thus improving the redox conversion reversibility.Even at high sulfur loading,the nanostructured Ni-Co metal alloy and metal oxide enable to have stable cycling performance under lean electrolyte conditions both in half-cell and full-cell batteries using a graphite anode.
基金Jiangsu Provincial Department of Science and Technology,Grant/Award Number:BK20201190Fundamental Research Funds for“Young Talent Support Plan”of Xi'an Jiaotong University,Grant/Award Number:HG6J003+1 种基金“1000-Plan program”of Shaanxi Province and the Velux Foundations through the research center V-Sustain,Grant/Award Number:9455National Key R&D Program of China,。
文摘The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processes.Two-dimensional(2D)few layered black phosphorus with fully exposed atoms and high sulfur affinity can be potential lithium-sulfur battery electrocatalysts,which,however,have limitations of restricted catalytic activity and poor electrochemical/chemical stability.To resolve these issues,we developed a multifunctional metal-free catalyst by covalently bonding few layered black phosphorus nanosheets with nitrogen-doped carbon-coated multiwalled carbon nanotubes(denoted c-FBP-NC).The experimental characterizations and theoretical calculations show that the formed polarized P-N covalent bonds in c-FBP-NC can efficiently regulate electron transfer from NC to FBP and significantly promote the capture and catalysis of lithium polysulfides,thus alleviating the shuttle effect.Meanwhile,the robust 1D-2D interwoven structure with large surface area and high porosity allows strong physical confinement and fast mass transfer.Impressively,with c-FBP-NC as the sulfur host,the battery shows a high areal capacity of 7.69 mAh cm^(−2) under high sulfur loading of 8.74 mg cm^(−2) and a low electrolyte/sulfur ratio of 5.7μL mg^(−1).Moreover,the assembled pouch cell with sulfur loading of 4 mg cm^(−2) and an electrolyte/sulfur ratio of 3.5μL mg^(−1) shows good rate capability and outstanding cyclability.This work proposes an interfacial and electronic structure engineering strategy for fast and durable sulfur electrochemistry,demonstrating great potential in lithium-sulfur batteries.
基金the financial support for this work from the National Natural Science Foundation of China(Nos.52171241,52201301 and 51871166)。
文摘The effects of nano-CaO contents on the microstructure,mechanical properties and corrosion resistance of lean Mg-1Zn alloy were investigated.The results showed that the addition of nano-CaO significantly refined the grain size and improved mechanical properties of the Mg-1Zn alloy.At the same time,CaO reacted with molten Mg in situ to form nano-MgO,whose corrosion product in SBF solution was the same with the degradation product of Mg matrix,resulting in the enhanced compactness of the Mg(OH)_(2) layer and reduced corrosion rate of matrix.The Mg-1Zn alloy had lower corrosion resistance due to excessively large grain size and shedding of corrosion products.The composite with 0.5 wt.%CaO had the best corrosion resistance with a weight loss of 9.875 mg·y^(-1)·mm^(-2)due to the small number of Ca_(2)Mg_(6)Zn_(3) phase and suitable grain size.While for composites with high content of CaO(0.7 wt.%and 1.0 wt.%),they had lower corrosion resistance due to the coexistence of large number of Ca_(2)Mg_(6)Zn_(3) and Mg_(2)Ca at grain boundaries,especially for 1.0 wt.%CaO composite,resulting from the strong micro-galvanic corrosion.
文摘In contemporary contexts,Lean Six Sigma(LSS)is extensively utilized and has evolved across various sectors due to its substantial benefits.This paper aims to explore the definition,origin,and development of LSS,as well as its key tools,methods,theoretical research,and future prospects.Furthermore,it analyzes the theoretical foundations and practical applications of LSS in-depth,with an emphasis on anticipating future development trends.The goal is to provide readers with a comprehensive overview of LSS and offer insights for enterprises seeking to implement LSS for process improvement and innovation.
基金the Research Foundation-Flanders (FWO) for a Research Project (G0B3218N)the financial support by the National Natural Science Foundation of China (22005054)+3 种基金Natural Science Foundation of Fujian Province (2021J01149)State Key Laboratory of Structural Chemistry (20200007)Sichuan Science and Technology Program (project No.: 2022ZYD0016 and 2023JDRC0013)the National Natural Science Foundation of China (project No. 21776120)。
文摘Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries.
文摘This paper presents a study on the design strategy of leaning-type arch bridges.The main characteristics of leaning-type arch bridges are first introduced;Kunshan Yufeng Bridge is taken as an example to discuss different aspects of a design strategy,which includes self-system optimization,selection of beam length and bridge deck position,and other aspects.This paper can be used as a reference to further improve and develop bridge design.
基金supported by the National Science & Technology Pillar Program(2012BAF03B02)National Natural Science Foundation of China(21101085,U1162203)+3 种基金Natural Science Foundation of Liaoning Province(2015020196)Doctoral Fund of Shandong Province(BS2015HZ003)Fushun Science & Technology Program(FSKJHT 201423)Liaoning Excellent Talents Program in University(LJQ2012031)~~
文摘TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties of the catalysts were studied by N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,ultraviolet-visible spectroscopy,H2 temperature-programmed reduction and Fourier transform infrared spectroscopy.TiO2/γ-Al2O3 supported In/Ag is a good catalyst for the reduction of NO to N2.It displayed high dispersion,large amounts of surface active components and high NO adsorption capacity,which gave good catalytic performance and stability for the reduction of NO with CO under lean burn conditions.The silver species stabilized and improved the dispersion of the indium species.The introduction of TiO2 into the γ-Al2O3 support promoted NO adsorption and improved the dispersion of the indium species and silver species.
文摘The prevalence of metabolic-associated fatty liver disease(MAFLD)has increased substantially in recent years because of the global obesity pandemic.MAFLD,now recognized as the number one cause of chronic liver disease in the world,not only increases liver-related morbidity and mortality among sufferers but also worsens the complications associated with other comorbid conditions such as cardiovascular disease,type 2 diabetes mellitus,obstructive sleep apnoea,lipid disorders and sarcopenia.Understanding the interplay between MAFLD and these comorbidities is important to design optimal therapeutic strategies.Sarcopenia can be either part of the disease process that results in MAFLD(e.g.,obesity or adiposity)or a consequence of MAFLD,especially in the advanced stages such as fibrosis and cirrhosis.Sarcopenia can also worsen MAFLD by reducing exercise capacity and by the production of various muscle-related chemical factors.Therefore,it is crucial to thoroughly understand how we deal with these diseases,especially when they coexist.We explore the pathobiological interlinks between MAFLD and sarcopenia in this comprehensive clinical update review article and propose evidence-based therapeutic strategies to enhance patient care.
基金support by the Spanish Ministry of Science and Innovation(Ref:PID2020-117302RA-I00)La Caixa Foundation(Ref:LCF/BQ/PR19/11700007)+3 种基金the University of Granada Plan Propio de Investigación 2021-Excellence actions:Unit of Excellence on Exercise,Nutrition,and Health(UCEENS)and by CIBEROBN,Centro de Investigación Biomédica en Red(CB22/3/00058)Instituto de Salud Carlos III,Ministerio de Ciencia e Innovación and Unión Europea-European Regional Development FundAMP was also recipient of a predoctoral fellowship(FPU20/05530)by the Spanish Ministry of Education,Culture and SportEUG was supported by the Maria Zambrano fellowship by the Ministerio de Universidades y la Unión Europea-NextGenerationEU.
文摘Background Pediatric cancer survivors are at increased risk of muscle weakness and low areal bone mineral density(aBMD).However,the prevalence of muscle strength deficits is not well documented,and the associations of muscle strength with aBMD are unknown in this population.Therefore,this study aimed to investigate the prevalence of upper-and lower-body muscle strength deficits and to examine the associations of upper-and lower-body muscle strength with age-,sex,and race-specific aBMD Z-scores at the total body,total hip,femoral neck,and lumbar spine.Methods This cross-sectional study included 116 pediatric cancer survivors(12.1±3.3 years old,mean±SD;42.2%female).Upper-and lower-body muscle strength were assessed by handgrip and standing long jump test,respectively.Dual‑energy X‑ray absorptiometry was used to measure aBMD(g/cm2).Associations between muscle strength and aBMD were evaluated in multivariable linear regression models.Logistic regression was used to evaluate the contribution of muscle strength(1-decile lower)to the odds of having low aBMD(Z-score≤1.0).All analyses were adjusted for time from treatment completion,radiotherapy exposure,and body mass index.Results More than one-half of survivors were within the 2 lowest deciles for upper-(56.9%)and lower-body muscle strength(60.0%)in comparison to age-and sex-specific reference values.Muscle strength deficits were associated with lower aBMD Z-scores at all sites(B=0.133–0.258,p=0.001–0.032).Each 1-decile lower in upper-body muscle strength was associated with 30%–95%higher odds of having low aBMD Z-scores at all sites.Each 1-decile lower in lower-body muscle strength was associated with 35%–70%higher odds of having low aBMD Z-scores at total body,total hip,and femoral neck.Conclusion Muscle strength deficits are prevalent in young pediatric cancer survivors,and such deficits are associated with lower aBMD Z-scores at all sites.These results suggest that interventions designed to improve muscle strength in this vulnerable population may have the added benefit of improving aBMD.
文摘The paper sheds light on the idle lean blow off(LBO)problem for high fuel air ratio(FAR)com⁃bustor,which is impossible to be addressed with traditional aero combustor design.A significant improvement in aero combustor design is required to resolve the idle LBO issue.The authors detailed a practical and efficient solu⁃tion,which not only solved the idle LBO issue but also defined the aero-thermal design for high-FAR combustor.The design will usher in a new era of aero combustor.
基金supported by the Natural Science Foundation of Sichuan Province of China,Nos.2022NSFSC1545 (to YG),2022NSFSC1387 (to ZF)the Natural Science Foundation of Chongqing of China,Nos.CSTB2022NSCQ-LZX0038,cstc2021ycjh-bgzxm0035 (both to XT)+3 种基金the National Natural Science Foundation of China,No.82001378 (to XT)the Joint Project of Chongqing Health Commission and Science and Technology Bureau,No.2023QNXM009 (to XT)the Science and Technology Research Program of Chongqing Education Commission of China,No.KJQN202200435 (to XT)the Chongqing Talents:Exceptional Young Talents Project,No.CQYC202005014 (to XT)。
文摘Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
基金National Key R&D Program of China,No.2017YFC0908900National Natural Science Foundation of China,No.81873565 and No.81900507Hospital Funded Clinical Research,Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,No.17CSK04 and No.15LC06.
文摘BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is one of the most common chronic diseases in the world.Nowadays,the percentage of non-obese or lean patients with NAFLD is increasing.NAFLD in non-obese populations,especially the lean subgroup with a normal waist circumference(WC),might lead to more problems than obese individuals,as these individuals may not visit clinics for NAFLD diagnosis or ignore the diagnosis of NAFLD.If the precise characteristics of these populations,especially the lean subgroup,are identified,the clinicians would be able to provide more appropriate advice and treatment to these populations.AIM To investigate the prevalence,clinical characteristics,risk factors,and possible indicators for NAFLD in lean Chinese adults with a normal WC.METHODS People without diabetes mellitus or significant alcohol consumption who underwent routine health examinations were included.Their fatty liver index(FLI),abdominal ultrasonography results,and controlled attenuation parameter were all assessed.Genotyping for single-nucleotide polymorphisms associated with NAFLD was performed in another small group consisting of biopsy-proven NAFLD subjects and healthy controls.RESULTS A total of 2715 subjects who underwent routine health examinations were included in the study.Among 810 lean participants with a normal WC,142(17.5%)fulfilled the diagnostic criteria for NAFLD.Waist-height ratio,hemoglobin,platelets,and triglycerides were significant factors associated with the presence of NAFLD in these participants.The appropriate cut-off value of the FLI score in screening for NAFLD in the lean subjects with a normal WC was 25.15,which had a 77.8%sensitivity and 75.9%specificity.There was no significant difference in the single-nucleotide polymorphisms in the SIRT1,APOC3,PNPLA3,AGTR1,and PPARGC1A genes between lean subjects with and without NAFLD(P<0.05).CONCLUSION NAFLD is not uncommon in lean Chinese adults even with a normal WC.Metabolic factors,rather than genetic factors,may play important roles in the development of NAFLD in this population.A lower cut-off value of the FLI score in screening for NAFLD should be used for lean Chinese adults with a normal WC.
基金supported by the National Natural Science Foundation of China(21805162 and 21671096)National Key Research and Development Program(2018YFB0104300)+3 种基金Key Program of the Natural Science Foundation of China(51732005)Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(2018B030322001)Shenzhen Key Laboratory of Solid State Batteries(No.ZDSYS201802081843465)Research Support for Postdoctoral Scholars coming to Shenzhen(K19407556)。
文摘Lithium-sulfur(Li-S)batteries possess overwhelming energy density of 2654 Wh kg-1,and are considered as the next-generation battery technology for energy demanding applications.Flooded electrolytes are ubiquitously employed in cells to ensure sufficient redox kinetics and preclude the interference of the electrolyte depletion due to side reactions with the lithium metal anode.This strategy is capable of enabling long-lasting,high-capacity and excellent-rate battery performances,but it mask the requirements of practical Li-S batteries,where high-sulfur-loading/content and lean electrolyte are prerequisite to realize the energy-dense Li-S batteries.Sparingly and highly solvating electrolytes have emerged as effective yet simple approaches to decrease the electrolyte/sulfur ratio through altering sulfur species and exerting new reaction pathways.Sparingly solvating electrolytes are characterized by few free solvents to solvate lithium polysulfides,rendering a quasi-solid sulfur conversion and decoupling the reaction mechanisms from electrolyte quantity used in cells;while highly solvating electrolytes adopt highdonicity or high-permittivity solvents and take their advantages of strong solvation ability toward polysulfide intermediates,thereby favoring the polysulfide formation and stabilizing unique radicals,which subsequently accelerate redox kinetics.Both solvation chemistry approaches have their respective features to allow the operation of cells under electrolyte-starved conditions.This Review discusses their unique features and basic physicochemical properties in the working Li-S batteries,presents remaining technical and scientific issues and provides future directions for the electrolyte chemistry to attain highenergy Li-S batteries.