This paper presents an experimental study on the emission characteristics and combustion instabilities of oxy-fuel combustions in a swirl-stabilized combustor. Different oxygen concentrations (Xoxy=25%~45%, where Xox...This paper presents an experimental study on the emission characteristics and combustion instabilities of oxy-fuel combustions in a swirl-stabilized combustor. Different oxygen concentrations (Xoxy=25%~45%, where Xoxy is oxygen concentra- tion by volume), equivalence ratios (φ=0.75~1.15) and combustion powers (CP=1.08~2.02 kW) were investigated in the oxy-fuel (CH4/CO2/O2) combustions, and reference cases (Xoxy=25%~35%, CH4/N2/O2 flames) were covered. The results show that the oxygen concentration in the oxidant stream significantly affects the combustion delay in the oxy-fuel flames, and the equivalence ratio has a slight effect, whereas the combustion power shows no impact. The temperature levels of the oxy-fuel flames inside the combustion chamber are much higher (up to 38.7%) than those of the reference cases. Carbon monoxide was vastly produced when Xoxy>35% or φ>0.95 in the oxy-fuel flames, while no nitric oxide was found in the exhaust gases because no N2 participates in the combustion process. The combustion instability of the oxy-fuel combustion is very different from those of the reference cases with similar oxygen content. Oxy-fuel combustions excite strong oscillations in all cases studied Xoxy=25%~45%. However, no pressure fluctuations were detected in the reference cases when Xoxy>28.6% accomplished by heavily sooting flames which were not found in the oxy-fuel combustions. Spectrum analysis shows that the frequency of dynamic pressure oscillations exhibits randomness in the range of 50~250 Hz, therefore resulting in a very small resultant amplitude. Temporal oscillations are very strong with amplitudes larger than 200 Pa, even short time fast Fourier transform (FFT) analysis (0.08 s) shows that the pressure amplitude can be larger than 40 Pa.展开更多
Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subg...Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subgrid-scale combustion model and an eddy break up (EBU) combustion model and Reynolds-averaged NavierStokes (RANS) modeling using the Reynolds stress equation model and a second-order moment (SOM) combustion model. For swirling flows, the LES statistical results give better agreement with the experimental results than the RANS modeling, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. For swirling combustion, both the proposed SOM SGS combustion model and the RANS-SOM model give the results in good agreement with the experimental results, but the LES-EBU modeling results are not in agreement with the experimental results.展开更多
Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combus...Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures.展开更多
The effect of swirl number(Sn)on the flow behavior and combustion characteristics of a lean premixed propane FlameФ=0.5 in a swirl burner configuration was numerically verified in this study.Two-dimensional numerical...The effect of swirl number(Sn)on the flow behavior and combustion characteristics of a lean premixed propane FlameФ=0.5 in a swirl burner configuration was numerically verified in this study.Two-dimensional numerical simulations were performed using ANSYS-Fluent software.For turbulence closure,a standard K-εturbulence model was applied.The turbulence-chemistry interaction scheme was modeled using the Finite Rate-Eddy Dissipation hybrid model(FR/EDM)with a reduced three-step reaction mechanism.The P1 radiation model was used for the flame radiation inside the combustion chamber.Four different swirl numbers were selected(0,0.72,1.05,and 1.4)corresponding to different angles(0°,39°,50°,and 57.8°).The results show that the predicted model agrees very well with the experimental data,especially with respect to the axial and radial velocity and temperature profiles.An outer recirculation zone(ORZ)is present in the combustor corner at Sn=0 and an inner recirculation zone(IRZ)appears at the combustor centerline inlet at a critical Sn=0.72.When the Sn reaches an excessive value,the IRZ moves toward the premixing tube,leading to a flame flashback.The flame structure and its length are strongly affected by changes in the Sn as well as the formation of NOx and CO at the combustor exit.展开更多
It is clarified that the important method to improve the blast temperature ofthe small and the middle blast furnaces whose production is about two-thirds of total sum of Chinafrom 1000℃ to 1250-1300℃ is to preheat b...It is clarified that the important method to improve the blast temperature ofthe small and the middle blast furnaces whose production is about two-thirds of total sum of Chinafrom 1000℃ to 1250-1300℃ is to preheat both their combustion-supporting air and coal gas. The airtemperature of blast furnaces can be reached to 1250-1300℃ by burning single blast furnace coal gasif high speed burner is applied to blast furnaces and new-type external combustion swirl-flowinghot stove is used to preheat their combustion-supporting air. The computational results of the flowand heat transfer processions in the hot stove prove that the surface of the bed of the thermalstorage balls there have not eccentric flow and the flow field and temperature field distribution iseven. The computational results of the blast temperature distribution are similar to thosedetermination experiment data. The numerical results also provide references for developing anddesigning the new-type external combustion swirl-flowing hot stoves.展开更多
Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mi...Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important展开更多
Ammonia (NH_(3)) is currently considered to be a potential carbon-free alternative fuel,and its large-scale use as such would certainly decrease greenhouse gas emissions and meet increasingly stringent emission requir...Ammonia (NH_(3)) is currently considered to be a potential carbon-free alternative fuel,and its large-scale use as such would certainly decrease greenhouse gas emissions and meet increasingly stringent emission requirements.Although the low flame propagation speed and high NO production of NH_(3) hinder its direct application as a renewable fuel,co-combustion of NH_(3)–H_(2)is an effective way to overcome these challenges.In this study,the combustion characteristics of NH_(3)–H_(2)swirling flames under different equivalence ratios and H_2blending ratios conditions are both numerically and experimentally investigated.Numerically,the One-Dimensional (1D) laminar flame computation presents a comparison base and the Three-Dimensional (3D) numerical simulation yields detailed flame property distributions.Experimentally,the high-speed camera takes instantaneous swirl flame images and the gas analyzer measures the NO emission at the exit plane of the flame chamber.Qualitative and quantitative analysis is performed on the flame structure and NO emission for a series of NH_(3)–H_(2)swirl flames.The variation trends of the NO emission calculated using different techniques agree very well.The quantitative results show that the NO emissions are much higher at lean equivalence ratios than those at rich equivalence ratios,and such difference is closely related to the combustion flame structure.Moreover,it is shown that the utilization of secondary air injection can achieve a significant reduction in NO emissions at the exit of the combustion chamber at equivalence ratios less than or equal to 0.9.展开更多
Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goa...Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goal is to provide a systematic assessment on combustion characteristics in diluted regimes for its application to environmentally-friendly approaches such as biogas combustion and exhanst-gas recirculation technology. Two main diluting species, N2 and CO2, are tested at various dilution rates. The results obtained by means of optical diagnostics show that five main flame regimes can be observed for Nz-diluted flames by changing excess air and dilution rate. CO2-diluted flames follow the same pattern evolution except that all the domains are shifted to lower excess air. Both N2 and CO2 dilution affect the lean blow- out (LBO) limits negatively. This behavior can be counter-balanced by reactant preheating which is able to broaden the flammability domain of the diluted flames. Flame reactivity is degraded by increasing dilution rate. Meanwhile, flames are thickened in the presence of both diluting species. NOx emissions are significantly reduced with dilution and proved to be relevant to flame stability diagrams: slight augmentation in NOx emission profiles is related to transitional flame states where instability occurs. Although dilution results in increase in CO emissions at certain levels, optimal dilution rates can still be proposed to achieve an ideal compromise.展开更多
Numerical computation of turbulent strongly-swirling flows in combustors is presented. Turbulence models examined are based on the transport equations of the Reynolds stresses, i.e., the second moment closures. The pa...Numerical computation of turbulent strongly-swirling flows in combustors is presented. Turbulence models examined are based on the transport equations of the Reynolds stresses, i.e., the second moment closures. The particular flows in question include confined as well as free swirling situations where the swirl number is large. It is indicated that the second-moment closure models offer an effective means for predicting strongly swirling flows. In particular, the isotropization of production and convection (IPC) model gives the best overall performance. The study directly serves for the improvement of combustor design.展开更多
This paper presents an experimental investigation of the turbulent reacting flow in a swirl combustor with staged air injection. The air injected into the combustor is composed of the primary swirling jet and the seco...This paper presents an experimental investigation of the turbulent reacting flow in a swirl combustor with staged air injection. The air injected into the combustor is composed of the primary swirling jet and the secon-dary non-swirling jet. A three dimension-laser particle dynamic analyzer (PDA) was employed to measure the in-stantaneous gas velocity. The probability density functions (PDF) for the instantaneous gas axial and tangential ve-locities at each measuring location, as well as the radial profiles of the root mean square of fluctuating gas axial and tangential velocities and the second-order moment for the fluctuating gas axial and tangential velocities are ob-tained. The measured results delineate the turbulence properties of the swirling reacting flow under the conditions of staged combustion.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50576081)Zhejiang Provincial Natural Science Foundation of China (No. R107532)+1 种基金Program for the New Century Excellent Talents in University (No. NCET-07-0761)the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 200747)
文摘This paper presents an experimental study on the emission characteristics and combustion instabilities of oxy-fuel combustions in a swirl-stabilized combustor. Different oxygen concentrations (Xoxy=25%~45%, where Xoxy is oxygen concentra- tion by volume), equivalence ratios (φ=0.75~1.15) and combustion powers (CP=1.08~2.02 kW) were investigated in the oxy-fuel (CH4/CO2/O2) combustions, and reference cases (Xoxy=25%~35%, CH4/N2/O2 flames) were covered. The results show that the oxygen concentration in the oxidant stream significantly affects the combustion delay in the oxy-fuel flames, and the equivalence ratio has a slight effect, whereas the combustion power shows no impact. The temperature levels of the oxy-fuel flames inside the combustion chamber are much higher (up to 38.7%) than those of the reference cases. Carbon monoxide was vastly produced when Xoxy>35% or φ>0.95 in the oxy-fuel flames, while no nitric oxide was found in the exhaust gases because no N2 participates in the combustion process. The combustion instability of the oxy-fuel combustion is very different from those of the reference cases with similar oxygen content. Oxy-fuel combustions excite strong oscillations in all cases studied Xoxy=25%~45%. However, no pressure fluctuations were detected in the reference cases when Xoxy>28.6% accomplished by heavily sooting flames which were not found in the oxy-fuel combustions. Spectrum analysis shows that the frequency of dynamic pressure oscillations exhibits randomness in the range of 50~250 Hz, therefore resulting in a very small resultant amplitude. Temporal oscillations are very strong with amplitudes larger than 200 Pa, even short time fast Fourier transform (FFT) analysis (0.08 s) shows that the pressure amplitude can be larger than 40 Pa.
基金Supported by the Special Funds for Major State Basic Research (No. G-1999-0222-07).
文摘Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subgrid-scale combustion model and an eddy break up (EBU) combustion model and Reynolds-averaged NavierStokes (RANS) modeling using the Reynolds stress equation model and a second-order moment (SOM) combustion model. For swirling flows, the LES statistical results give better agreement with the experimental results than the RANS modeling, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. For swirling combustion, both the proposed SOM SGS combustion model and the RANS-SOM model give the results in good agreement with the experimental results, but the LES-EBU modeling results are not in agreement with the experimental results.
基金The project supported by the Special Funds for Major State Basic Research(G-1999-0222-07).
文摘Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures.
基金supported by the University of Science and Technology Houari Boumediene(U.S.T.H.B.)Energy Mechanics and Conversion Systems Laboratory.
文摘The effect of swirl number(Sn)on the flow behavior and combustion characteristics of a lean premixed propane FlameФ=0.5 in a swirl burner configuration was numerically verified in this study.Two-dimensional numerical simulations were performed using ANSYS-Fluent software.For turbulence closure,a standard K-εturbulence model was applied.The turbulence-chemistry interaction scheme was modeled using the Finite Rate-Eddy Dissipation hybrid model(FR/EDM)with a reduced three-step reaction mechanism.The P1 radiation model was used for the flame radiation inside the combustion chamber.Four different swirl numbers were selected(0,0.72,1.05,and 1.4)corresponding to different angles(0°,39°,50°,and 57.8°).The results show that the predicted model agrees very well with the experimental data,especially with respect to the axial and radial velocity and temperature profiles.An outer recirculation zone(ORZ)is present in the combustor corner at Sn=0 and an inner recirculation zone(IRZ)appears at the combustor centerline inlet at a critical Sn=0.72.When the Sn reaches an excessive value,the IRZ moves toward the premixing tube,leading to a flame flashback.The flame structure and its length are strongly affected by changes in the Sn as well as the formation of NOx and CO at the combustor exit.
文摘It is clarified that the important method to improve the blast temperature ofthe small and the middle blast furnaces whose production is about two-thirds of total sum of Chinafrom 1000℃ to 1250-1300℃ is to preheat both their combustion-supporting air and coal gas. The airtemperature of blast furnaces can be reached to 1250-1300℃ by burning single blast furnace coal gasif high speed burner is applied to blast furnaces and new-type external combustion swirl-flowinghot stove is used to preheat their combustion-supporting air. The computational results of the flowand heat transfer processions in the hot stove prove that the surface of the bed of the thermalstorage balls there have not eccentric flow and the flow field and temperature field distribution iseven. The computational results of the blast temperature distribution are similar to thosedetermination experiment data. The numerical results also provide references for developing anddesigning the new-type external combustion swirl-flowing hot stoves.
文摘Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important
基金the National Natural Science Foundation of China (Nos.51876182 and 52006184)the Fundamental Research Funds for the Central Universities of China (No.20720180058)the Fundamental Research Funds,China (No.2020-JJ-118)。
文摘Ammonia (NH_(3)) is currently considered to be a potential carbon-free alternative fuel,and its large-scale use as such would certainly decrease greenhouse gas emissions and meet increasingly stringent emission requirements.Although the low flame propagation speed and high NO production of NH_(3) hinder its direct application as a renewable fuel,co-combustion of NH_(3)–H_(2)is an effective way to overcome these challenges.In this study,the combustion characteristics of NH_(3)–H_(2)swirling flames under different equivalence ratios and H_2blending ratios conditions are both numerically and experimentally investigated.Numerically,the One-Dimensional (1D) laminar flame computation presents a comparison base and the Three-Dimensional (3D) numerical simulation yields detailed flame property distributions.Experimentally,the high-speed camera takes instantaneous swirl flame images and the gas analyzer measures the NO emission at the exit plane of the flame chamber.Qualitative and quantitative analysis is performed on the flame structure and NO emission for a series of NH_(3)–H_(2)swirl flames.The variation trends of the NO emission calculated using different techniques agree very well.The quantitative results show that the NO emissions are much higher at lean equivalence ratios than those at rich equivalence ratios,and such difference is closely related to the combustion flame structure.Moreover,it is shown that the utilization of secondary air injection can achieve a significant reduction in NO emissions at the exit of the combustion chamber at equivalence ratios less than or equal to 0.9.
基金Project supported by the China Scholarship Council
文摘Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goal is to provide a systematic assessment on combustion characteristics in diluted regimes for its application to environmentally-friendly approaches such as biogas combustion and exhanst-gas recirculation technology. Two main diluting species, N2 and CO2, are tested at various dilution rates. The results obtained by means of optical diagnostics show that five main flame regimes can be observed for Nz-diluted flames by changing excess air and dilution rate. CO2-diluted flames follow the same pattern evolution except that all the domains are shifted to lower excess air. Both N2 and CO2 dilution affect the lean blow- out (LBO) limits negatively. This behavior can be counter-balanced by reactant preheating which is able to broaden the flammability domain of the diluted flames. Flame reactivity is degraded by increasing dilution rate. Meanwhile, flames are thickened in the presence of both diluting species. NOx emissions are significantly reduced with dilution and proved to be relevant to flame stability diagrams: slight augmentation in NOx emission profiles is related to transitional flame states where instability occurs. Although dilution results in increase in CO emissions at certain levels, optimal dilution rates can still be proposed to achieve an ideal compromise.
文摘Numerical computation of turbulent strongly-swirling flows in combustors is presented. Turbulence models examined are based on the transport equations of the Reynolds stresses, i.e., the second moment closures. The particular flows in question include confined as well as free swirling situations where the swirl number is large. It is indicated that the second-moment closure models offer an effective means for predicting strongly swirling flows. In particular, the isotropization of production and convection (IPC) model gives the best overall performance. The study directly serves for the improvement of combustor design.
基金Supported jointly by the National Natural Science Foundation of China (No.59806006) and the Laboratory Open Fund ofTsinghua University.
文摘This paper presents an experimental investigation of the turbulent reacting flow in a swirl combustor with staged air injection. The air injected into the combustor is composed of the primary swirling jet and the secon-dary non-swirling jet. A three dimension-laser particle dynamic analyzer (PDA) was employed to measure the in-stantaneous gas velocity. The probability density functions (PDF) for the instantaneous gas axial and tangential ve-locities at each measuring location, as well as the radial profiles of the root mean square of fluctuating gas axial and tangential velocities and the second-order moment for the fluctuating gas axial and tangential velocities are ob-tained. The measured results delineate the turbulence properties of the swirling reacting flow under the conditions of staged combustion.