针对无约束条件下的人脸图像样本少、面部姿态变化大、被遮挡以及背景复杂等问题,提出一种结合三维人脸矫正与相似性学习相结合的人脸验证算法(sub-SL)。首先,通过三维人脸矫正方法对人脸图像进行姿态矫正,将图像中的人脸矫正为标准正面...针对无约束条件下的人脸图像样本少、面部姿态变化大、被遮挡以及背景复杂等问题,提出一种结合三维人脸矫正与相似性学习相结合的人脸验证算法(sub-SL)。首先,通过三维人脸矫正方法对人脸图像进行姿态矫正,将图像中的人脸矫正为标准正面脸;其次,裁剪该正面脸的脸部相关区域,去除复杂的图像背景;最后,利用基于个体子空间的相似性学习方法对图像对之间的相似度进行度量,完成人脸验证。实验采用了几个以LFW(Labeled Faces in the Wild)数据库为基础的经过预处理操作(例如人脸矫正、裁剪等)后建立起来的数据库。在基于局部三值模式(LTP)的特征提取方法并且训练图像对数为625的实验中,sub-SL算法的识别率比利用马氏距离进行度量学习的算法sub-ML以及结合了马氏距离与相似性学习的度量学习算法sub-SML分别高出了15. 6%和8. 4%。实验结果表明,sub-SL算法能够有效提高无约束条件下人脸识别的准确率。展开更多
目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基...目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 d B与29.17 d B的效果。结论本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。展开更多
文摘针对无约束条件下的人脸图像样本少、面部姿态变化大、被遮挡以及背景复杂等问题,提出一种结合三维人脸矫正与相似性学习相结合的人脸验证算法(sub-SL)。首先,通过三维人脸矫正方法对人脸图像进行姿态矫正,将图像中的人脸矫正为标准正面脸;其次,裁剪该正面脸的脸部相关区域,去除复杂的图像背景;最后,利用基于个体子空间的相似性学习方法对图像对之间的相似度进行度量,完成人脸验证。实验采用了几个以LFW(Labeled Faces in the Wild)数据库为基础的经过预处理操作(例如人脸矫正、裁剪等)后建立起来的数据库。在基于局部三值模式(LTP)的特征提取方法并且训练图像对数为625的实验中,sub-SL算法的识别率比利用马氏距离进行度量学习的算法sub-ML以及结合了马氏距离与相似性学习的度量学习算法sub-SML分别高出了15. 6%和8. 4%。实验结果表明,sub-SL算法能够有效提高无约束条件下人脸识别的准确率。
文摘目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 d B与29.17 d B的效果。结论本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。