期刊文献+
共找到288,758篇文章
< 1 2 250 >
每页显示 20 50 100
Novel Static Security and Stability Control of Power Systems Based on Artificial Emotional Lazy Q-Learning
1
作者 Tao Bao Xiyuan Ma +3 位作者 Zhuohuan Li Duotong Yang Pengyu Wang Changcheng Zhou 《Energy Engineering》 EI 2024年第6期1713-1737,共25页
The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases.In order to improve and ensure the stable operation of the novel power system,this stud... The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases.In order to improve and ensure the stable operation of the novel power system,this study proposes an artificial emotional lazy Q-learning method,which combines artificial emotion,lazy learning,and reinforcement learning for static security and stability analysis of power systems.Moreover,this study compares the analysis results of the proposed method with those of the small disturbance method for a stand-alone power system and verifies that the proposed lazy Q-learning method is able to effectively screen useful data for learning,and improve the static security stability of the new type of power system more effectively than the traditional proportional-integral-differential control and Q-learning methods. 展开更多
关键词 artificial sentiment static secure stable analysis Q-learning lazy learning data filtering
下载PDF
Relevance of sleep for wellness:New trends in using artificial intelligence and machine learning
2
作者 Deb Sanjay Nag Amlan Swain +2 位作者 Seelora Sahu Abhishek Chatterjee Bhanu Pratap Swain 《World Journal of Clinical Cases》 SCIE 2024年第7期1196-1199,共4页
Sleep and well-being have been intricately linked,and sleep hygiene is paramount for developing mental well-being and resilience.Although widespread,sleep disorders require elaborate polysomnography laboratory and pat... Sleep and well-being have been intricately linked,and sleep hygiene is paramount for developing mental well-being and resilience.Although widespread,sleep disorders require elaborate polysomnography laboratory and patient-stay with sleep in unfamiliar environments.Current technologies have allowed various devices to diagnose sleep disorders at home.However,these devices are in various validation stages,with many already receiving approvals from competent authorities.This has captured vast patient-related physiologic data for advanced analytics using artificial intelligence through machine and deep learning applications.This is expected to be integrated with patients’Electronic Health Records and provide individualized prescriptive therapy for sleep disorders in the future. 展开更多
关键词 Sleep initiation and maintenance disorders Sleep apnea OBSTRUCTIVE Machine learning artificial intelligence ALGORITHMS
下载PDF
Artificial Intelligence Meets Flexible Sensors:Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses
3
作者 Tianming Sun Bin Feng +8 位作者 Jinpeng Huo Yu Xiao Wengan Wang Jin Peng Zehua Li Chengjie Du Wenxian Wang Guisheng Zou Lei Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期235-273,共39页
The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,f... The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,flexible sensors are evolving from a single sensing element to a smarter system,which is capable of highly efficient acquisition,analysis,and even perception of vast,multifaceted data.While challenging from a manual perspective,the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm(machine learning)and the framework(artificial synapses)level.This review presents the recent progress of the emerging AI-driven,intelligent flexible sensing systems.The basic concept of machine learning and artificial synapses are introduced.The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed,which significantly advances the applications such as flexible sensory systems,soft/humanoid robotics,and human activity monitoring.As two of the most profound innovations in the twenty-first century,the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings. 展开更多
关键词 Flexible electronics Wearable electronics Neuromorphic MEMRISTOR Deep learning
下载PDF
Retinal vascular morphological characteristics in diabetic retinopathy: an artificial intelligence study using a transfer learning system to analyze ultra-wide field images
4
作者 Xin-Yi Deng Hui Liu +6 位作者 Zheng-Xi Zhang Han-Xiao Li Jun Wang Yi-Qi Chen Jian-Bo Mao Ming-Zhai Sun Li-Jun Shen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期1001-1006,共6页
AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes o... AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes of DR patients and 100 eyes of healthy individuals were recruited for the study.The severity of DR patients was graded as mild,moderate and severe non-proliferative diabetic retinopathy(NPDR)according to the international clinical diabetic retinopathy(ICDR)disease severity scale classification,and retinal vascular morphology was quantitatively analyzed in ultra-wide field images using RU-net and transfer learning methods.The presence of DME was determined by optical coherence tomography(OCT),and differences in vascular morphological characteristics were compared between patients with and without DME.RESULTS:Retinal vessel segmentation using RU-net and transfer learning system had an accuracy of 99%and a Dice metric of 0.76.Compared with the healthy group,the DR group had smaller vessel angles(33.68±3.01 vs 37.78±1.60),smaller fractal dimension(Df)values(1.33±0.05 vs 1.41±0.03),less vessel density(1.12±0.44 vs 2.09±0.36)and fewer vascular branches(206.1±88.8 vs 396.5±91.3),all P<0.001.As the severity of DR increased,Df values decreased,P=0.031.No significant difference between the DME and non-DME groups were observed in vascular morphological characteristics.CONCLUSION:In this study,an artificial intelligence retinal vessel segmentation system is used with 99%accuracy,thus providing with relatively satisfactory performance in the evaluation of quantitative vascular morphology.DR patients have a tendency of vascular occlusion and dropout.The presence of DME does not compromise the integral retinal vascular pattern. 展开更多
关键词 diabetic retinopathy vascular morphology deep learning ultra-wide field imaging diabetic macular edema
下载PDF
An Artificial Intelligence-Based Framework for Fruits Disease Recognition Using Deep Learning
5
作者 Irfan Haider Muhammad Attique Khan +2 位作者 Muhammad Nazir Taerang Kim Jae-Hyuk Cha 《Computer Systems Science & Engineering》 2024年第2期529-554,共26页
Fruit infections have an impact on both the yield and the quality of the crop.As a result,an automated recognition system for fruit leaf diseases is important.In artificial intelligence(AI)applications,especially in a... Fruit infections have an impact on both the yield and the quality of the crop.As a result,an automated recognition system for fruit leaf diseases is important.In artificial intelligence(AI)applications,especially in agriculture,deep learning shows promising disease detection and classification results.The recent AI-based techniques have a few challenges for fruit disease recognition,such as low-resolution images,small datasets for learning models,and irrelevant feature extraction.This work proposed a new fruit leaf leaf leaf disease recognition framework using deep learning features and improved pathfinder optimization.Three fruit types have been employed in this work for the validation process,such as apple,grape,and Citrus.In the first step,a noisy dataset is prepared by employing the original images to learn the designed framework better.The EfficientNet-B0 deep model is fine-tuned on the next step and trained separately on the original and noisy data.After that,features are fused using a serial concatenation approach that is later optimized in the next step using an improved Path Finder Algorithm(PFA).This algorithm aims to select the best features based on the fitness score and ignore redundant information.The selected features are finally classified using machine learning classifiers such as Medium Neural Network,Wide Neural Network,and Support Vector Machine.The experimental process was conducted on each fruit dataset separately and obtained an accuracy of 100%,99.7%,99.7%,and 93.4%for apple,grape,Citrus fruit,and citrus plant leaves,respectively.A detailed analysis is conducted and also compared with the recent techniques,and the proposed framework shows improved accuracy. 展开更多
关键词 Fruit disease contrast enhancement augmentation deep learning FUSION feature selection classification
下载PDF
Artificial Intelligence-Enhanced Learning:A New Paradigm in the“Business Data Analysis and Application”Course
6
作者 Suhan Wu 《Journal of Contemporary Educational Research》 2024年第2期164-175,共12页
This paper explores the transformative impact of generative artificial intelligence(AI)on the“Business Data Analysis and Application”course in the post-2023 era,marking a significant paradigm shift in educational me... This paper explores the transformative impact of generative artificial intelligence(AI)on the“Business Data Analysis and Application”course in the post-2023 era,marking a significant paradigm shift in educational methodologies.It investigates how generative AI reshapes teaching and learning dynamics,enhancing the processing of complex data sets and nurturing critical thinking skills.The study highlights the role of AI in fostering dynamic,personalized,and adaptive learning experiences,addressing the evolving pedagogical needs of the business sector.Key challenges,including equitable access,academic integrity,and ethical considerations such as data privacy and algorithmic bias,are thoroughly examined.The research reveals that the integration of generative AI aligns with current professional demands,equipping students with cutting-edge AI tools,and tailoring learning to individual needs through real-time feedback mechanisms.The study concludes that the incorporation of generative AI into this course signifies a substantial evolution in educational approaches,offering profound implications for student learning and professional development. 展开更多
关键词 Generative AI Pedagogical innovation Adaptive Personalized learning Curriculum enhancement
下载PDF
Artificial intelligence and machine learning for hemorrhagic trauma care
7
作者 Henry T.Peng MMusaab Siddiqui +3 位作者 Shawn G.Rhind Jing Zhang Luis Teodoro da Luz Andrew Beckett 《Military Medical Research》 SCIE CAS CSCD 2023年第5期680-698,共19页
Artificial intelligence(AI),a branch of machine learning(ML)has been increasingly employed in the research of trauma in various aspects.Hemorrhage is the most common cause of trauma-related death.To better elucidate t... Artificial intelligence(AI),a branch of machine learning(ML)has been increasingly employed in the research of trauma in various aspects.Hemorrhage is the most common cause of trauma-related death.To better elucidate the current role of AI and contribute to future development of ML in trauma care,we conducted a review focused on the use of ML in the diagnosis or treatment strategy of traumatic hemorrhage.A literature search was carried out on PubMed and Google scholar.Titles and abstracts were screened and,if deemed appropriate,the full articles were reviewed.We included 89 studies in the review.These studies could be grouped into five areas:(1)prediction of outcomes;(2)risk assessment and injury severity for triage;(3)prediction of transfusions;(4)detection of hemorrhage;and(5)prediction of coagulopathy.Performance analysis of ML in comparison with current standards for trauma care showed that most studies demonstrated the benefits of ML models.However,most studies were retrospective,focused on prediction of mortality,and development of patient outcome scoring systems.Few studies performed model assessment via test datasets obtained from different sources.Prediction models for transfusions and coagulopathy have been developed,but none is in widespread use.AI-enabled ML-driven technology is becoming integral part of the whole course of trauma care.Comparison and application of ML algorithms using different datasets from initial training,testing and validation in prospective and randomized controlled trials are warranted for provision of decision support for individualized patient care as far forward as possible. 展开更多
关键词 artificial intelligence HEMORRHAGE Machine learning TRAUMA INJURY
下载PDF
改进Q-Learning的路径规划算法研究
8
作者 宋丽君 周紫瑜 +2 位作者 李云龙 侯佳杰 何星 《小型微型计算机系统》 CSCD 北大核心 2024年第4期823-829,共7页
针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在... 针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在更新函数中设计深度学习因子以保证算法探索概率;融合遗传算法,避免陷入局部路径最优同时按阶段探索最优迭代步长次数,以减少动态地图探索重复率;最后提取输出的最优路径关键节点采用贝塞尔曲线进行平滑处理,进一步保证路径平滑度和可行性.实验通过栅格法构建地图,对比实验结果表明,改进后的算法效率相较于传统算法在迭代次数和路径上均有较大优化,且能够较好的实现动态地图下的路径规划,进一步验证所提方法的有效性和实用性. 展开更多
关键词 移动机器人 路径规划 Q-learning算法 平滑处理 动态避障
下载PDF
Machine learning applications in stroke medicine:advancements,challenges,and future prospectives 被引量:1
9
作者 Mario Daidone Sergio Ferrantelli Antonino Tuttolomondo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期769-773,共5页
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique... Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease. 展开更多
关键词 cerebrovascular disease deep learning machine learning reinforcement learning STROKE stroke therapy supervised learning unsupervised learning
下载PDF
Artificial intelligence and machine learning in motor recovery: A rehabilitation medicine perspective
10
作者 Raktim Swarnakar Shiv Lal Yadav 《World Journal of Clinical Cases》 SCIE 2023年第29期7258-7260,共3页
Artificial intelligence(AI)and machine learning(ML)are powerful technologies with the potential to revolutionize motor recovery in rehabilitation medicine.This perspective explores how AI and ML are harnessed to asses... Artificial intelligence(AI)and machine learning(ML)are powerful technologies with the potential to revolutionize motor recovery in rehabilitation medicine.This perspective explores how AI and ML are harnessed to assess,diagnose,and design personalized treatment plans for patients with motor impairments.The integration of wearable sensors,virtual reality,augmented reality,and robotic devices allows for precise movement analysis and adaptive neurorehabilitation approaches.Moreover,AI-driven telerehabilitation enables remote monitoring and consultation.Although these applications show promise,healthcare professionals must interpret AI-generated insights and ensure patient safety.While AI and ML are in their early stages,ongoing research will determine their effectiveness in rehabilitation medicine. 展开更多
关键词 artificial intelligence Motor learning REHABILITATION Motor recovery Machine learning Physical medicine and rehabilitation
下载PDF
Use of machine learning models for the prognostication of liver transplantation: A systematic review 被引量:1
11
作者 Gidion Chongo Jonathan Soldera 《World Journal of Transplantation》 2024年第1期164-188,共25页
BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are p... BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication. 展开更多
关键词 Liver transplantation Machine learning models PROGNOSTICATION Allograft allocation artificial intelligence
下载PDF
Artificial Fish Swarm Optimization with Deep Learning Enabled Opinion Mining Approach
12
作者 Saud S.Alotaibi Eatedal Alabdulkreem +5 位作者 Sami Althahabi Manar Ahmed Hamza Mohammed Rizwanullah Abu Sarwar Zamani Abdelwahed Motwakel Radwa Marzouk 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期737-751,共15页
Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the patte... Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions. 展开更多
关键词 Sentiment analysis opinion mining natural language processing artificial fish swarm algorithm deep learning
下载PDF
Toward Artificial General Intelligence: Deep Reinforcement Learning Method to AI in Medicine
13
作者 Daniel Schilling Weiss Nguyen Richard Odigie 《Journal of Computer and Communications》 2023年第9期84-120,共37页
Artificial general intelligence (AGI) is the ability of an artificial intelligence (AI) agent to solve somewhat-arbitrary tasks in somewhat-arbitrary environments. Despite being a long-standing goal in the field of AI... Artificial general intelligence (AGI) is the ability of an artificial intelligence (AI) agent to solve somewhat-arbitrary tasks in somewhat-arbitrary environments. Despite being a long-standing goal in the field of AI, achieving AGI remains elusive. In this study, we empirically assessed the generalizability of AI agents by applying a deep reinforcement learning (DRL) approach to the medical domain. Our investigation involved examining how modifying the agent’s structure, task, and environment impacts its generality. Sample: An NIH chest X-ray dataset with 112,120 images and 15 medical conditions. We evaluated the agent’s performance on binary and multiclass classification tasks through a baseline model, a convolutional neural network model, a deep Q network model, and a proximal policy optimization model. Results: Our results suggest that DRL agents with the algorithmic flexibility to autonomously vary their macro/microstructures can generalize better across given tasks and environments. 展开更多
关键词 artificial Intelligence Deep learning General-Purpose learning Agent GENERALIZABILITY Algorithmic Flexibility Internal Autonomy
下载PDF
Transfer learning from T1-weighted to T2-weighted Magnetic resonance sequences for brain image segmentation
14
作者 Imene Mecheter Maysam Abbod +1 位作者 Habib Zaidi Abbes Amira 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期26-39,共14页
Magnetic resonance(MR)imaging is a widely employed medical imaging technique that produces detailed anatomical images of the human body.The segmentation of MR im-ages plays a crucial role in medical image analysis,as ... Magnetic resonance(MR)imaging is a widely employed medical imaging technique that produces detailed anatomical images of the human body.The segmentation of MR im-ages plays a crucial role in medical image analysis,as it enables accurate diagnosis,treatment planning,and monitoring of various diseases and conditions.Due to the lack of sufficient medical images,it is challenging to achieve an accurate segmentation,especially with the application of deep learning networks.The aim of this work is to study transfer learning from T1-weighted(T1-w)to T2-weighted(T2-w)MR sequences to enhance bone segmentation with minimal required computation resources.With the use of an excitation-based convolutional neural networks,four transfer learning mechanisms are proposed:transfer learning without fine tuning,open fine tuning,conservative fine tuning,and hybrid transfer learning.Moreover,a multi-parametric segmentation model is proposed using T2-w MR as an intensity-based augmentation technique.The novelty of this work emerges in the hybrid transfer learning approach that overcomes the overfitting issue and preserves the features of both modalities with minimal computation time and resources.The segmentation results are evaluated using 14 clinical 3D brain MR and CT images.The results reveal that hybrid transfer learning is superior for bone segmentation in terms of performance and computation time with DSCs of 0.5393±0.0007.Although T2-w-based augmentation has no significant impact on the performance of T1-w MR segmentation,it helps in improving T2-w MR segmentation and developing a multi-sequences segmentation model. 展开更多
关键词 computer vision CONVOLUTION image segmentation learning(artificial intelligence)
下载PDF
Low-Cost Federated Broad Learning for Privacy-Preserved Knowledge Sharing in the RIS-Aided Internet of Vehicles 被引量:1
15
作者 Xiaoming Yuan Jiahui Chen +4 位作者 Ning Zhang Qiang(John)Ye Changle Li Chunsheng Zhu Xuemin Sherman Shen 《Engineering》 SCIE EI CAS CSCD 2024年第2期178-189,共12页
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency... High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV. 展开更多
关键词 Knowledge sharing Internet of Vehicles Federated learning Broad learning Reconfigurable intelligent surfaces Resource allocation
下载PDF
Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk
16
作者 Polin Rahman Ahmed Rifat +3 位作者 MD.IftehadAmjad Chy Mohammad Monirujjaman Khan Mehedi Masud Sultan Aljahdali 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期757-775,共19页
Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learni... Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learning models to predict heart failure.The fundamental concept is to compare the correctness of various Machine Learning(ML)algorithms and boost algorithms to improve models’accuracy for prediction.Some supervised algorithms like K-Nearest Neighbor(KNN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF),Logistic Regression(LR)are considered to achieve the best results.Some boosting algorithms like Extreme Gradient Boosting(XGBoost)and Cat-Boost are also used to improve the prediction using Artificial Neural Networks(ANN).This research also focuses on data visualization to identify patterns,trends,and outliers in a massive data set.Python and Scikit-learns are used for ML.Tensor Flow and Keras,along with Python,are used for ANN model train-ing.The DT and RF algorithms achieved the highest accuracy of 95%among the classifiers.Meanwhile,KNN obtained a second height accuracy of 93.33%.XGBoost had a gratified accuracy of 91.67%,SVM,CATBoost,and ANN had an accuracy of 90%,and LR had 88.33%accuracy. 展开更多
关键词 Heart failure prediction data visualization machine learning k-nearest neighbors support vector machine decision tree random forest logistic regression xgboost and catboost artificial neural network
下载PDF
Malicious URL Classification Using Artificial Fish Swarm Optimization and Deep Learning
17
作者 Anwer Mustafa Hilal Aisha Hassan Abdalla Hashim +5 位作者 Heba G.Mohamed Mohamed K.Nour Mashael M.Asiri Ali M.Al-Sharafi Mahmoud Othman Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2023年第1期607-621,共15页
Cybersecurity-related solutions have become familiar since it ensures security and privacy against cyberattacks in this digital era.Malicious Uniform Resource Locators(URLs)can be embedded in email or Twitter and used... Cybersecurity-related solutions have become familiar since it ensures security and privacy against cyberattacks in this digital era.Malicious Uniform Resource Locators(URLs)can be embedded in email or Twitter and used to lure vulnerable internet users to implement malicious data in their systems.This may result in compromised security of the systems,scams,and other such cyberattacks.These attacks hijack huge quantities of the available data,incurring heavy financial loss.At the same time,Machine Learning(ML)and Deep Learning(DL)models paved the way for designing models that can detect malicious URLs accurately and classify them.With this motivation,the current article develops an Artificial Fish Swarm Algorithm(AFSA)with Deep Learning Enabled Malicious URL Detection and Classification(AFSADL-MURLC)model.The presented AFSADL-MURLC model intends to differentiate the malicious URLs from genuine URLs.To attain this,AFSADL-MURLC model initially carries out data preprocessing and makes use of glove-based word embedding technique.In addition,the created vector model is then passed onto Gated Recurrent Unit(GRU)classification to recognize the malicious URLs.Finally,AFSA is applied to the proposed model to enhance the efficiency of GRU model.The proposed AFSADL-MURLC technique was experimentally validated using benchmark dataset sourced from Kaggle repository.The simulation results confirmed the supremacy of the proposed AFSADL-MURLC model over recent approaches under distinct measures. 展开更多
关键词 Malicious URL CYBERSECURITY deep learning machine learning metaheuristics gated recurrent unit
下载PDF
Application of artificial hibernation technology in acute brain injury 被引量:1
18
作者 Xiaoni Wang Shulian Chen +5 位作者 Xiaoyu Wang Zhen Song Ziqi Wang Xiaofei Niu Xiaochu Chen Xuyi Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1940-1946,共7页
Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment ... Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application. 展开更多
关键词 cute brain injury artificial hibernation HYPOTHERMIA low metabolism mild hypothermia
下载PDF
Learning-Related Sentiment Detection, Classification, and Application for a Quality Education Using Artificial Intelligence Techniques
19
作者 Samah Alhazmi Shahnawaz Khan Mohammad Haider Syed 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3487-3499,共13页
Quality education is one of the primary objectives of any nation-build-ing strategy and is one of the seventeen Sustainable Development Goals(SDGs)by the United Nations.To provide quality education,delivering top-qual... Quality education is one of the primary objectives of any nation-build-ing strategy and is one of the seventeen Sustainable Development Goals(SDGs)by the United Nations.To provide quality education,delivering top-quality con-tent is not enough.However,understanding the learners’emotions during the learning process is equally important.However,most of this research work uses general data accessed from Twitter or other publicly available databases.These databases are generally not an ideal representation of the actual learning process and the learners’sentiments about the learning process.This research has col-lected real data from the learners,mainly undergraduate university students of dif-ferent regions and cultures.By analyzing the emotions of the students,appropriate steps can be suggested to improve the quality of education they receive.In order to understand the learning emotions,the XLNet technique is used.It investigated the transfer learning method to adopt an efficient model for learners’sentiment detection and classification based on real data.An experiment on the collected data shows that the proposed approach outperforms aspect enhanced sentiment analysis and topic sentiment analysis in the online learning community. 展开更多
关键词 Transfer learning AI modeling optimization sentiment analysis deep learning
下载PDF
Assessment of compressive strength of jet grouting by machine learning 被引量:1
20
作者 Esteban Diaz Edgar Leonardo Salamanca-Medina Roberto Tomas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期102-111,共10页
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope... Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns. 展开更多
关键词 Jet grouting Ground improvement Compressive strength Machine learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部