期刊文献+
共找到218,995篇文章
< 1 2 250 >
每页显示 20 50 100
M-learning结合CBL在消化科规培教学中的探讨及应用
1
作者 洪静 程中华 +3 位作者 余金玲 王韶英 嵇贝纳 冯珍 《中国卫生产业》 2024年第2期203-205,共3页
目的探究移动学习平台(M-learning,ML)结合案例教学(Case-based Learning,CBL)在消化科住院医师规范化培训(简称规培)教学中的应用效果。方法选取2021年1月—2023年1月于上海市徐汇区中心医院消化科参加规培学习的80名医师作为研究对象... 目的探究移动学习平台(M-learning,ML)结合案例教学(Case-based Learning,CBL)在消化科住院医师规范化培训(简称规培)教学中的应用效果。方法选取2021年1月—2023年1月于上海市徐汇区中心医院消化科参加规培学习的80名医师作为研究对象,将其按照随机数表法分为研究组和对照组,每组40名。对照组给予传统讲授式教学法,研究组给予M-learning结合CBL教学法,对比两组医师的理论考试成绩、实践技能考试成绩和学习满意度。结果研究组的理论成绩和实践技能考试成绩均高于对照组,差异具有统计学意义(P均<0.05);研究组的学习满意度明显高于对照组,差异具有统计学意义(P<0.05)。结论将Mlearning结合CBL教学法应用于消化科规培教学中,不仅能够提升医师的理论考试成绩和实践技能考试成绩,还能够有效提高医师学习满意度。 展开更多
关键词 m-learning CBL 消化科 规培教学
下载PDF
CDIO与M-Learning理念下艺术类专业创新人才培养途径研究
2
作者 明珠 《艺术科技》 2023年第2期47-49,共3页
创新能力提升已成为我国当今时代发展背景下人才培养的必然要求。艺术设计专业正在快速实现跨学科、跨领域的专业整合。创新型人才的培养是我国科技领域、工业领域、服务业领域等多领域人才培养中的重要环节。以OBE为目标导向,运用CDIO... 创新能力提升已成为我国当今时代发展背景下人才培养的必然要求。艺术设计专业正在快速实现跨学科、跨领域的专业整合。创新型人才的培养是我国科技领域、工业领域、服务业领域等多领域人才培养中的重要环节。以OBE为目标导向,运用CDIO教育理念与M-Learning教育理念推动教学模式创新,能够为教育带来更加智慧、深入、宽泛的发展。其教育理念的融合,在艺术类课程的开发与实践中具有重要意义。基于此,文章对CDIO与M-Learning理念下艺术类专业创新人才的培养途径展开研究。 展开更多
关键词 m-learning CDIO 艺术类 创新
下载PDF
基于改进Q-Learning的移动机器人路径规划算法
3
作者 王立勇 王弘轩 +2 位作者 苏清华 王绅同 张鹏博 《电子测量技术》 北大核心 2024年第9期85-92,共8页
随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的... 随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的问题,本研究提出一种改进的Q-Learning算法。该算法改进Q矩阵赋值方法,使迭代前期探索过程具有指向性,并降低碰撞的情况;改进Q矩阵迭代方法,使Q矩阵更新具有前瞻性,避免在一个小区域中反复探索;改进随机探索策略,在迭代前期全面利用环境信息,后期向目标点靠近。在不同栅格地图仿真验证结果表明,本文算法在Q-Learning算法的基础上,通过上述改进降低探索过程中的路径长度、减少抖动并提高收敛的速度,具有更高的计算效率。 展开更多
关键词 路径规划 强化学习 移动机器人 Q-learning算法 ε-decreasing策略
下载PDF
基于Q-Learning的航空器滑行路径规划研究
4
作者 王兴隆 王睿峰 《中国民航大学学报》 CAS 2024年第3期28-33,共6页
针对传统算法规划航空器滑行路径准确度低、不能根据整体场面运行情况进行路径规划的问题,提出一种基于Q-Learning的路径规划方法。通过对机场飞行区网络结构模型和强化学习的仿真环境分析,设置了状态空间和动作空间,并根据路径的合规... 针对传统算法规划航空器滑行路径准确度低、不能根据整体场面运行情况进行路径规划的问题,提出一种基于Q-Learning的路径规划方法。通过对机场飞行区网络结构模型和强化学习的仿真环境分析,设置了状态空间和动作空间,并根据路径的合规性和合理性设定了奖励函数,将路径合理性评价值设置为滑行路径长度与飞行区平均滑行时间乘积的倒数。最后,分析了动作选择策略参数对路径规划模型的影响。结果表明,与A*算法和Floyd算法相比,基于Q-Learning的路径规划在滑行距离最短的同时,避开了相对繁忙的区域,路径合理性评价值高。 展开更多
关键词 滑行路径规划 机场飞行区 强化学习 Q-learning
下载PDF
学习交互的现状与未来发展——从课堂学习到e-Learning,m-Learning再到u-Learning 被引量:37
5
作者 杨刚 徐晓东 《中国电化教育》 CSSCI 北大核心 2010年第7期52-58,共7页
学习交互已成为影响教育活动的关键因素之一。本文以学习环境发展历程作为学习交互的分析视角,以交互作为探讨的经纬,分别从不同学习形式,即从课堂学习,到e-Learning,再到m-Learning,未来发展为u-learning学习来研究交互在教育教学中的... 学习交互已成为影响教育活动的关键因素之一。本文以学习环境发展历程作为学习交互的分析视角,以交互作为探讨的经纬,分别从不同学习形式,即从课堂学习,到e-Learning,再到m-Learning,未来发展为u-learning学习来研究交互在教育教学中的不同表现形式、理论基础和特征等,并对未来学习交互进行了展望。笔者希望通过本文对未来学习交互的探讨,能够引起更多的研究者对此问题的关注,并引发对未来教育改革的思考。 展开更多
关键词 学习交互 E-learning m-learning U-learning 普适技术
下载PDF
Machine learning applications in stroke medicine:advancements,challenges,and future prospectives 被引量:3
6
作者 Mario Daidone Sergio Ferrantelli Antonino Tuttolomondo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期769-773,共5页
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique... Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease. 展开更多
关键词 cerebrovascular disease deep learning machine learning reinforcement learning STROKE stroke therapy supervised learning unsupervised learning
下载PDF
改进Q-Learning的路径规划算法研究
7
作者 宋丽君 周紫瑜 +2 位作者 李云龙 侯佳杰 何星 《小型微型计算机系统》 CSCD 北大核心 2024年第4期823-829,共7页
针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在... 针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在更新函数中设计深度学习因子以保证算法探索概率;融合遗传算法,避免陷入局部路径最优同时按阶段探索最优迭代步长次数,以减少动态地图探索重复率;最后提取输出的最优路径关键节点采用贝塞尔曲线进行平滑处理,进一步保证路径平滑度和可行性.实验通过栅格法构建地图,对比实验结果表明,改进后的算法效率相较于传统算法在迭代次数和路径上均有较大优化,且能够较好的实现动态地图下的路径规划,进一步验证所提方法的有效性和实用性. 展开更多
关键词 移动机器人 路径规划 Q-learning算法 平滑处理 动态避障
下载PDF
基于Q-learning的自适应链路状态路由协议
8
作者 吴麒 左琳立 +2 位作者 丁建 邢智童 夏士超 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第5期945-953,共9页
针对大规模无人机自组网面临的任务需求多样性、电磁环境复杂性、节点高机动性等问题,充分考虑无人机节点高速移动的特点,基于无人机拓扑稳定度和链路通信容量指标设计了一种无人机多点中继(multi-point relay,MPR)选择方法;为了减少网... 针对大规模无人机自组网面临的任务需求多样性、电磁环境复杂性、节点高机动性等问题,充分考虑无人机节点高速移动的特点,基于无人机拓扑稳定度和链路通信容量指标设计了一种无人机多点中继(multi-point relay,MPR)选择方法;为了减少网络路由更新时间,增加无人机自组网路由策略的稳定性和可靠性,提出了一种基于Q-learning的自适应链路状态路由协议(Q-learning based adaptive link state routing,QALSR)。仿真结果表明,所提算法性能指标优于现有的主动路由协议。 展开更多
关键词 无人机自组网 路由协议 强化学习 自适应
下载PDF
M-learning视域下APP软件在混合式英语教学中的应用——以Android系统为例 被引量:12
9
作者 刘士祥 朱兵艳 《闽西职业技术学院学报》 2016年第1期93-97,共5页
信息技术与教育的融合由来已久。21世纪,教育信息化在提高国民素质和增强国家创新能力方面起着举足轻重的作用。以M-learning为典型的个性化学习为终身学习和学习型社会提供了技术支撑和动力机制。然而,纵观大学英语教与学,基于多媒体... 信息技术与教育的融合由来已久。21世纪,教育信息化在提高国民素质和增强国家创新能力方面起着举足轻重的作用。以M-learning为典型的个性化学习为终身学习和学习型社会提供了技术支撑和动力机制。然而,纵观大学英语教与学,基于多媒体的传统教学依然占据主导地位。M-learning背景下,综合利用优质教学资源、共享平台及APP应用软件,开发与完善基于M-learning的混合式英语教学模式,有利于大幅提升英语教学效果。 展开更多
关键词 m-learning 英语教学 混合式学习 ANDROID系统
下载PDF
M-learning——当代外语学习方式的崭新尝试 被引量:3
10
作者 杨敏 宋云霞 《成人教育》 北大核心 2010年第3期86-87,共2页
M-Learning是利用无线移动通信网络技术,以无线移动通信设备获取教育信息、教育资源和教育服务的一种新型学习形式,这种学习形式必然与一直走在与信息技术相结合前列的外语学习息息相关。文章解释了移动学习的基本概念,阐述了M-learnin... M-Learning是利用无线移动通信网络技术,以无线移动通信设备获取教育信息、教育资源和教育服务的一种新型学习形式,这种学习形式必然与一直走在与信息技术相结合前列的外语学习息息相关。文章解释了移动学习的基本概念,阐述了M-learning应用于外语学习的理论基础,介绍了国外移动技术应用于外语学习的诸多研究,指出移动外语学习的研究和探讨需要外语教育工作者的积极参与。 展开更多
关键词 移动学习 m-learning 外语学习
下载PDF
物理实验课程M-learning教学平台的设计与教学应用 被引量:4
11
作者 马现超 方恺 +1 位作者 马宁生 倪晨 《中国教育信息化》 2017年第3期85-88,共4页
在移动互联网快速发展、无线通信技术和智能移动设备迅速普及的背景下,本文通过对智能手机应用软件(Mobile App)的开发与实践,探究了在高等院校教学对传统课堂教学改革创新的新模式,以具有在线学习和测试功能教学应用软件为媒介,进行移... 在移动互联网快速发展、无线通信技术和智能移动设备迅速普及的背景下,本文通过对智能手机应用软件(Mobile App)的开发与实践,探究了在高等院校教学对传统课堂教学改革创新的新模式,以具有在线学习和测试功能教学应用软件为媒介,进行移动学习(M-learning)教学平台的开发,并实现其教学应用。同时,结合当前高等院校中学生普遍的移动学习倾向和大学本科物理实验的课堂教学模式,建设大学物理移动学习平台,成为移动端教学应用软件开发以及基于移动端的物理实验教学的一次教学创新实践探索。 展开更多
关键词 移动学习(m-learning) MOBILE App 物理实验教学 智能手机
下载PDF
Significant risk factors for intensive care unit-acquired weakness:A processing strategy based on repeated machine learning 被引量:9
12
作者 Ling Wang Deng-Yan Long 《World Journal of Clinical Cases》 SCIE 2024年第7期1235-1242,共8页
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr... BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration. 展开更多
关键词 Intensive care unit-acquired weakness Risk factors Machine learning PREVENTION Strategies
下载PDF
A credibility-aware swarm-federated deep learning framework in internet of vehicles 被引量:1
13
作者 Zhe Wang Xinhang Li +2 位作者 Tianhao Wu Chen Xu Lin Zhang 《Digital Communications and Networks》 SCIE CSCD 2024年第1期150-157,共8页
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead... Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations. 展开更多
关键词 Swarm learning Federated deep learning Internet of vehicles PRIVACY EFFICIENCY
下载PDF
Assessments of Data-Driven Deep Learning Models on One-Month Predictions of Pan-Arctic Sea Ice Thickness 被引量:1
14
作者 Chentao SONG Jiang ZHU Xichen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1379-1390,共12页
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma... In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications. 展开更多
关键词 Arctic sea ice thickness deep learning spatiotemporal sequence prediction transfer learning
下载PDF
适合西部m-learning的教育形式和学习资源开发 被引量:1
15
作者 胡圣波 郑志平 《现代教育技术》 2005年第4期17-20,共4页
随着移动互联技术和移动通信技术发展,m-learning已经成为教育信息化的一个重要方面。我国西部地区经济欠发达,如何发展适合西部的m-learning是非常重要的。文章简要介绍了欧美m-learning研究的现状,提出了适合西部m-learning发展的教... 随着移动互联技术和移动通信技术发展,m-learning已经成为教育信息化的一个重要方面。我国西部地区经济欠发达,如何发展适合西部的m-learning是非常重要的。文章简要介绍了欧美m-learning研究的现状,提出了适合西部m-learning发展的教育形式,研究了m-learning学习资源的开发问题。 展开更多
关键词 m-learning 教育形式 学习资源 开发
下载PDF
改进的Q-learning蜂群算法求解置换流水车间调度问题
16
作者 杜利珍 宣自风 +1 位作者 唐家琦 王鑫涛 《组合机床与自动化加工技术》 北大核心 2024年第10期175-180,共6页
针对置换流水车间调度问题,提出了一种基于改进的Q-learning算法的人工蜂群算法。该算法设计了一种改进的奖励函数作为人工蜂群算法的环境,根据奖励函数的优劣来判断下一代种群的寻优策略,并通过Q-learning智能选择人工蜂群算法的蜜源... 针对置换流水车间调度问题,提出了一种基于改进的Q-learning算法的人工蜂群算法。该算法设计了一种改进的奖励函数作为人工蜂群算法的环境,根据奖励函数的优劣来判断下一代种群的寻优策略,并通过Q-learning智能选择人工蜂群算法的蜜源的更新维度数大小,根据选择的维度数大小对编码进行更新,提高了收敛速度和精度,最后使用不同规模的置换流水车间调度问题的实例来验证所提算法的性能,通过对标准实例的计算与其它算法对比,证明该算法的准确性。 展开更多
关键词 Q-learning算法 人工蜂群算法 置换流水车间调度
下载PDF
Low-Cost Federated Broad Learning for Privacy-Preserved Knowledge Sharing in the RIS-Aided Internet of Vehicles 被引量:1
17
作者 Xiaoming Yuan Jiahui Chen +4 位作者 Ning Zhang Qiang(John)Ye Changle Li Chunsheng Zhu Xuemin Sherman Shen 《Engineering》 SCIE EI CAS CSCD 2024年第2期178-189,共12页
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency... High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV. 展开更多
关键词 Knowledge sharing Internet of Vehicles Federated learning Broad learning Reconfigurable intelligent surfaces Resource allocation
下载PDF
Deep learning-based inpainting of saturation artifacts in optical coherence tomography images 被引量:2
18
作者 Muyun Hu Zhuoqun Yuan +2 位作者 Di Yang Jingzhu Zhao Yanmei Liang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期1-10,共10页
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ... Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness. 展开更多
关键词 Optical coherence tomography saturation artifacts deep learning image inpainting.
下载PDF
基于移动通信技术m-learning的应用思考 被引量:2
19
作者 吴永祥 胡圣波 《现代远距离教育》 2005年第2期58-59,共2页
随着移动互联技术的和移动通信技术的发展,m -learning已成为教育信息化的一个重要方面。m -learning不是对传统教育的替代,而是一个重要的补充,提出了m
关键词 m-learning 移动通信技术 教育信息化 互联技术 传统教育 应用策略
下载PDF
Machine learning with active pharmaceutical ingredient/polymer interaction mechanism:Prediction for complex phase behaviors of pharmaceuticals and formulations 被引量:2
20
作者 Kai Ge Yiping Huang Yuanhui Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期263-272,共10页
The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceu... The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceutical formulations.In this work,a developed machine-learning model efficiently predicts the solubility of APIs in polymers by learning the phase equilibrium principle and using a few molecular descriptors.Under the few-shot learning framework,thermodynamic theory(perturbed-chain statistical associating fluid theory)was used for data augmentation,and computational chemistry was applied for molecular descriptors'screening.The results showed that the developed machine-learning model can predict the API-polymer phase diagram accurately,broaden the solubility data of APIs in polymers,and reproduce the relationship between API solubility and the interaction mechanisms between API and polymer successfully,which provided efficient guidance for the development of pharmaceutical formulations. 展开更多
关键词 Multi-task machine learning Density functional theory Hydrogen bond interaction MISCIBILITY SOLUBILITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部