Traditional Numerical Reservoir Simulation has been contributing to the oil and gas industry for decades.The current state of this technology is the result of decades of research and development by a large number of e...Traditional Numerical Reservoir Simulation has been contributing to the oil and gas industry for decades.The current state of this technology is the result of decades of research and development by a large number of engineers and scientists.Starting in the late 1960s and early 1970s,advances in computer hardware along with development and adaptation of clever algorithms resulted in a paradigm shift in reservoir studies moving them from simplified analogs and analytical solution methods to more mathematically robust computational and numerical solution models.展开更多
Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining co...Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining consistent steam production and high operational costs.This article capitalizes on the technical advantages of big data artificial intelligence,optimizing the power generation process of domestic waste incineration as the entry point,and adopts four main engine modules of Alibaba Cloud reinforcement learning algorithm engine,operating parameter prediction engine,anomaly recognition engine,and video visual recognition algorithm engine.The reinforcement learning algorithm extracts the operational parameters of each incinerator to obtain a control benchmark.Through the operating parameter prediction algorithm,prediction models for drum pressure,primary steam flow,NOx,SO2,and HCl are constructed to achieve short-term prediction of operational parameters,ultimately improving control performance.The anomaly recognition algorithm develops a thickness identification model for the material layer in the drying section,allowing for rapid and effective assessment of feed material thickness to ensure uniformity control.Meanwhile,the visual recognition algorithm identifies flame images and assesses the combustion status and location of the combustion fire line within the furnace.This real-time understanding of furnace flame combustion conditions guides adjustments to the grate and air volume.Integrating AI technology into the waste incineration sector empowers the environmental protection industry with the potential to leverage big data.This development holds practical significance in optimizing the harmless and resource-oriented treatment of urban domestic waste,reducing operational costs,and increasing efficiency.展开更多
Contribution:This paper designs a learning and training platform that can systematically help radiologists learn automated medical image analysis technology.The platform can help radiologists master deep learning theo...Contribution:This paper designs a learning and training platform that can systematically help radiologists learn automated medical image analysis technology.The platform can help radiologists master deep learning theories and medical applications such as the three-dimensional medical decision support system,and strengthen the teaching practice of deep learning related courses in hospitals,so as to help doctors better understand deep learning knowledge and improve the efficiency of auxiliary diagnosis.Background:In recent years,deep learning has been widely used in academia,industry,andmedicine.An increasing number of companies are starting to recruit a large number of professionals in the field of deep learning.Increasing numbers of colleges and universities also offer courses related to deep learning to help radiologists learn automated medical image analysis techniques.For now,however,there is no practical training platform that can help radiologists learn automated medical image analysis systematically.ApplicationDesign:The platform proposes the basic learning,model combat,business application(BMR)concept,including the learning guidance system and the assessment training system,which constitutes a closed-loop learning guidance mode of“learning-assessment-training-learning”.Findings:The survey results show that most of radiologists met their learning expectations by using this platform.The platform can help radiologists master deep learning techniques quickly,comprehensively and firmly.展开更多
文摘Traditional Numerical Reservoir Simulation has been contributing to the oil and gas industry for decades.The current state of this technology is the result of decades of research and development by a large number of engineers and scientists.Starting in the late 1960s and early 1970s,advances in computer hardware along with development and adaptation of clever algorithms resulted in a paradigm shift in reservoir studies moving them from simplified analogs and analytical solution methods to more mathematically robust computational and numerical solution models.
文摘Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining consistent steam production and high operational costs.This article capitalizes on the technical advantages of big data artificial intelligence,optimizing the power generation process of domestic waste incineration as the entry point,and adopts four main engine modules of Alibaba Cloud reinforcement learning algorithm engine,operating parameter prediction engine,anomaly recognition engine,and video visual recognition algorithm engine.The reinforcement learning algorithm extracts the operational parameters of each incinerator to obtain a control benchmark.Through the operating parameter prediction algorithm,prediction models for drum pressure,primary steam flow,NOx,SO2,and HCl are constructed to achieve short-term prediction of operational parameters,ultimately improving control performance.The anomaly recognition algorithm develops a thickness identification model for the material layer in the drying section,allowing for rapid and effective assessment of feed material thickness to ensure uniformity control.Meanwhile,the visual recognition algorithm identifies flame images and assesses the combustion status and location of the combustion fire line within the furnace.This real-time understanding of furnace flame combustion conditions guides adjustments to the grate and air volume.Integrating AI technology into the waste incineration sector empowers the environmental protection industry with the potential to leverage big data.This development holds practical significance in optimizing the harmless and resource-oriented treatment of urban domestic waste,reducing operational costs,and increasing efficiency.
基金This work is supported in part by the Major Fundamental Research of Natural Science Foundation of Shandong Province under Grant ZR2019ZD05Joint Fund for Smart Computing of Shandong Natural Science Foundation under Grant ZR2020LZH013+1 种基金the Scientific Research Platform and Projects of Department of Education of Guangdong Province under Grant 2019GKQNCX121the Intelligent Perception and Computing Innovation Platform of the Shenzhen Institute of Information Technology under Grant PT2019E001.
文摘Contribution:This paper designs a learning and training platform that can systematically help radiologists learn automated medical image analysis technology.The platform can help radiologists master deep learning theories and medical applications such as the three-dimensional medical decision support system,and strengthen the teaching practice of deep learning related courses in hospitals,so as to help doctors better understand deep learning knowledge and improve the efficiency of auxiliary diagnosis.Background:In recent years,deep learning has been widely used in academia,industry,andmedicine.An increasing number of companies are starting to recruit a large number of professionals in the field of deep learning.Increasing numbers of colleges and universities also offer courses related to deep learning to help radiologists learn automated medical image analysis techniques.For now,however,there is no practical training platform that can help radiologists learn automated medical image analysis systematically.ApplicationDesign:The platform proposes the basic learning,model combat,business application(BMR)concept,including the learning guidance system and the assessment training system,which constitutes a closed-loop learning guidance mode of“learning-assessment-training-learning”.Findings:The survey results show that most of radiologists met their learning expectations by using this platform.The platform can help radiologists master deep learning techniques quickly,comprehensively and firmly.