期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Intelligent Deep Learning Based Xception Model for Hyperspectral Image Analysis and Classification 被引量:3
1
作者 J.Banumathi A.Muthumari +4 位作者 S.Dhanasekaran S.Rajasekaran Irina V.Pustokhina Denis A.Pustokhin K.Shankar 《Computers, Materials & Continua》 SCIE EI 2021年第5期2393-2407,共15页
Due to the advancements in remote sensing technologies,the generation of hyperspectral imagery(HSI)gets significantly increased.Accurate classification of HSI becomes a critical process in the domain of hyperspectral ... Due to the advancements in remote sensing technologies,the generation of hyperspectral imagery(HSI)gets significantly increased.Accurate classification of HSI becomes a critical process in the domain of hyperspectral data analysis.The massive availability of spectral and spatial details of HSI has offered a great opportunity to efficiently illustrate and recognize ground materials.Presently,deep learning(DL)models particularly,convolutional neural networks(CNNs)become useful for HSI classification owing to the effective feature representation and high performance.In this view,this paper introduces a new DL based Xception model for HSI analysis and classification,called Xcep-HSIC model.Initially,the presented model utilizes a feature relation map learning(FRML)to identify the relationship among the hyperspectral features and explore many features for improved classifier results.Next,the DL based Xception model is applied as a feature extractor to derive a useful set of features from the FRML map.In addition,kernel extreme learning machine(KELM)optimized by quantum-behaved particle swarm optimization(QPSO)is employed as a classification model,to identify the different set of class labels.An extensive set of simulations takes place on two benchmarks HSI dataset,namely Indian Pines and Pavia University dataset.The obtained results ensured the effective performance of the XcepHSIC technique over the existing methods by attaining a maximum accuracy of 94.32%and 92.67%on the applied India Pines and Pavia University dataset respectively. 展开更多
关键词 Hyperspectral imagery deep learning xception kernel extreme learning map parameter tuning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部