Big data have the characteristics of enormous volume,high velocity,diversity,value-sparsity,and uncertainty,which lead the knowledge learning from them full of challenges.With the emergence of crowdsourcing,versatile ...Big data have the characteristics of enormous volume,high velocity,diversity,value-sparsity,and uncertainty,which lead the knowledge learning from them full of challenges.With the emergence of crowdsourcing,versatile information can be obtained on-demand so that the wisdom of crowds is easily involved to facilitate the knowledge learning process.During the past thirteen years,researchers in the AI community made great efforts to remove the obstacles in the field of learning from crowds.This concentrated survey paper comprehensively reviews the technical progress in crowdsourcing learning from a systematic perspective that includes three dimensions of data,models,and learning processes.In addition to reviewing existing important work,the paper places a particular emphasis on providing some promising blueprints on each dimension as well as discussing the lessons learned from our past research work,which will light up the way for new researchers and encourage them to pursue new contributions.展开更多
To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed p...To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed paradigm consists of three main stages:categorization of high dimensional data,high-dimensionality-trait-driven feature extraction,and high-dimensionality-trait-driven classifier selection.In the first stage,according to the definition of high-dimensionality and the relationship between sample size and feature dimensions,the high-dimensionality traits of credit dataset are further categorized into two types:100<feature dimensions<sample size,and feature dimensions≥sample size.In the second stage,some typical feature extraction methods are tested regarding the two categories of high dimensionality.In the final stage,four types of classifiers are performed to evaluate credit risk considering different high-dimensionality traits.For the purpose of illustration and verification,credit classification experiments are performed on two publicly available credit risk datasets,and the results show that the proposed high-dimensionality-trait-driven learning paradigm for feature extraction and classifier selection is effective in handling high-dimensional credit classification issues and improving credit classification accuracy relative to the benchmark models listed in this study.展开更多
Sometimes foreign language teachers find formal instructions unrewarding. This paper intends to find answers to the problems found in the English teaching classroom at university level in China by reviewing the SLA th...Sometimes foreign language teachers find formal instructions unrewarding. This paper intends to find answers to the problems found in the English teaching classroom at university level in China by reviewing the SLA theories on formal instruction and some pedagogical implications drawn from the findings are discussed.展开更多
基金supported by the National Key Research and Development Program of China(2018AAA0102002)the National Natural Science Foundation of China(62076130,91846104).
文摘Big data have the characteristics of enormous volume,high velocity,diversity,value-sparsity,and uncertainty,which lead the knowledge learning from them full of challenges.With the emergence of crowdsourcing,versatile information can be obtained on-demand so that the wisdom of crowds is easily involved to facilitate the knowledge learning process.During the past thirteen years,researchers in the AI community made great efforts to remove the obstacles in the field of learning from crowds.This concentrated survey paper comprehensively reviews the technical progress in crowdsourcing learning from a systematic perspective that includes three dimensions of data,models,and learning processes.In addition to reviewing existing important work,the paper places a particular emphasis on providing some promising blueprints on each dimension as well as discussing the lessons learned from our past research work,which will light up the way for new researchers and encourage them to pursue new contributions.
基金This work is partially supported by grants from the Key Program of National Natural Science Foundation of China(NSFC Nos.71631005 and 71731009)the Major Program of the National Social Science Foundation of China(No.19ZDA103).
文摘To solve the high-dimensionality issue and improve its accuracy in credit risk assessment,a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection.The proposed paradigm consists of three main stages:categorization of high dimensional data,high-dimensionality-trait-driven feature extraction,and high-dimensionality-trait-driven classifier selection.In the first stage,according to the definition of high-dimensionality and the relationship between sample size and feature dimensions,the high-dimensionality traits of credit dataset are further categorized into two types:100<feature dimensions<sample size,and feature dimensions≥sample size.In the second stage,some typical feature extraction methods are tested regarding the two categories of high dimensionality.In the final stage,four types of classifiers are performed to evaluate credit risk considering different high-dimensionality traits.For the purpose of illustration and verification,credit classification experiments are performed on two publicly available credit risk datasets,and the results show that the proposed high-dimensionality-trait-driven learning paradigm for feature extraction and classifier selection is effective in handling high-dimensional credit classification issues and improving credit classification accuracy relative to the benchmark models listed in this study.
文摘Sometimes foreign language teachers find formal instructions unrewarding. This paper intends to find answers to the problems found in the English teaching classroom at university level in China by reviewing the SLA theories on formal instruction and some pedagogical implications drawn from the findings are discussed.