Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The prac...Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The practical challenge,however,is to extract such signals from noisy measurements and this difficulty is addressed first by J.Han in the form of linear and nonlinear tracking differentiator(TD).While improvements were made,TD did not completely resolve the conflict between the noise sensitivity and the accuracy and timeliness of the differentiation.The two approaches proposed in this paper start with the basic linear TD,but apply iterative learning mechanism to the historical data in a moving window(MW),to form two new iterative learning tracking differentiators(IL-TD):one is a parallel IL-TD using an iterative ladder network structure which is implementable in analog circuits;the other a serial IL-TD which is implementable digitally on any computer platform.Both algorithms are validated in simulations which show that the proposed two IL-TDs have better tracking differentiation and de-noise performance compared to the existing linear TD.展开更多
It is of vital importance to reduce injuries and economic losses by accurate forecasts of typhoon tracks. A huge amount of typhoon observations have been accumulated by the meteorological department, however, they are...It is of vital importance to reduce injuries and economic losses by accurate forecasts of typhoon tracks. A huge amount of typhoon observations have been accumulated by the meteorological department, however, they are yet to be adequately utilized. It is an effective method to employ machine learning to perform forecasts. A long short term memory(LSTM) neural network is trained based on the typhoon observations during 1949–2011 in China's Mainland, combined with big data and data mining technologies, and a forecast model based on machine learning for the prediction of typhoon tracks is developed. The results show that the employed algorithm produces desirable 6–24 h nowcasting of typhoon tracks with an improved precision.展开更多
Visual tracking, which has been widely used in many vision fields, has been one of the most active research topics in computer vision in recent years. However, there are still challenges in visual tracking, such as il...Visual tracking, which has been widely used in many vision fields, has been one of the most active research topics in computer vision in recent years. However, there are still challenges in visual tracking, such as illumination change, object occlu- sion, and appearance deformation. To overcome these difficulties, a reliable point assignment (RPA) algorithm based on wavelet transform is proposed. The reliable points are obtained by searching the location that holds local maximal wavelet coefficients. Since the local maximal wavelet coefficients indicate high variation in the image, the reliable points are robust against image noise, illumination change, and appearance deformation. Moreover, a Kalman filter is applied to the detection step to speed up the detection processing and reduce false detection. Finally, the proposed RPA is integrated into the tracking-learning-detection (TLD) framework with the Kalman filter, which not only improves the tracking precision, but also reduces the false detections. Experimental results showed that the new framework outperforms TLD and kernelized correlation filters with respect to precision, f-measure, and average overlap in percent.展开更多
基金supported by National Natural Science Foundation of China(61773170,62173151)the Natural Science Foundation of Guangdong Province(2023A1515010949,2021A1515011850).
文摘Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The practical challenge,however,is to extract such signals from noisy measurements and this difficulty is addressed first by J.Han in the form of linear and nonlinear tracking differentiator(TD).While improvements were made,TD did not completely resolve the conflict between the noise sensitivity and the accuracy and timeliness of the differentiation.The two approaches proposed in this paper start with the basic linear TD,but apply iterative learning mechanism to the historical data in a moving window(MW),to form two new iterative learning tracking differentiators(IL-TD):one is a parallel IL-TD using an iterative ladder network structure which is implementable in analog circuits;the other a serial IL-TD which is implementable digitally on any computer platform.Both algorithms are validated in simulations which show that the proposed two IL-TDs have better tracking differentiation and de-noise performance compared to the existing linear TD.
基金The National Natural Science Foundation of China under contract Nos 61273245 and 41306028the Beijing Natural Science Foundation under contract No.4152031+2 种基金the National Special Research Fund for Non-Profit Marine Sector under contract Nos201405022-3 and 2013418026-4the Ocean Science and Technology Program of North China Sea Branch of State Oceanic Administration under contract No.2017A01the Operational Marine Forecasting Program of State Oceanic Administration
文摘It is of vital importance to reduce injuries and economic losses by accurate forecasts of typhoon tracks. A huge amount of typhoon observations have been accumulated by the meteorological department, however, they are yet to be adequately utilized. It is an effective method to employ machine learning to perform forecasts. A long short term memory(LSTM) neural network is trained based on the typhoon observations during 1949–2011 in China's Mainland, combined with big data and data mining technologies, and a forecast model based on machine learning for the prediction of typhoon tracks is developed. The results show that the employed algorithm produces desirable 6–24 h nowcasting of typhoon tracks with an improved precision.
基金Project supported by the National Natural Science Foundation of China (Nos. 61671213 and 61302058) and the Guangzhou Key Lab of Body Data Science (No. 201605030011)
文摘Visual tracking, which has been widely used in many vision fields, has been one of the most active research topics in computer vision in recent years. However, there are still challenges in visual tracking, such as illumination change, object occlu- sion, and appearance deformation. To overcome these difficulties, a reliable point assignment (RPA) algorithm based on wavelet transform is proposed. The reliable points are obtained by searching the location that holds local maximal wavelet coefficients. Since the local maximal wavelet coefficients indicate high variation in the image, the reliable points are robust against image noise, illumination change, and appearance deformation. Moreover, a Kalman filter is applied to the detection step to speed up the detection processing and reduce false detection. Finally, the proposed RPA is integrated into the tracking-learning-detection (TLD) framework with the Kalman filter, which not only improves the tracking precision, but also reduces the false detections. Experimental results showed that the new framework outperforms TLD and kernelized correlation filters with respect to precision, f-measure, and average overlap in percent.