期刊文献+
共找到304,877篇文章
< 1 2 250 >
每页显示 20 50 100
Early identification of stroke through deep learning with multi-modal human speech and movement data
1
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
下载PDF
Advancements in Liver Tumor Detection:A Comprehensive Review of Various Deep Learning Models
2
作者 Shanmugasundaram Hariharan D.Anandan +3 位作者 Murugaperumal Krishnamoorthy Vinay Kukreja Nitin Goyal Shih-Yu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期91-122,共32页
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi... Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges. 展开更多
关键词 Liver tumor detection liver tumor segmentation image processing liver tumor diagnosis feature extraction tumor classification deep learning machine learning
下载PDF
An Enhanced Lung Cancer Detection Approach Using Dual-Model Deep Learning Technique
3
作者 Sumaia Mohamed Elhassan Saad Mohamed Darwish Saleh Mesbah Elkaffas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期835-867,共33页
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc... Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance. 展开更多
关键词 Lung cancer detection dual-model deep learning technique data augmentation CNN YOLOv8
下载PDF
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
4
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS
5
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
下载PDF
Water resource forecasting with machine learning and deep learning:A scientometric analysis
6
作者 Chanjuan Liu Jing Xu +2 位作者 Xi’an Li Zhongyao Yu Jinran Wu 《Artificial Intelligence in Geosciences》 2024年第1期220-231,共12页
Water prediction plays a crucial role in modern-day water resource management,encompassing both logical hydro-patterns and demand forecasts.To gain insights into its current focus,status,and emerging themes,this study... Water prediction plays a crucial role in modern-day water resource management,encompassing both logical hydro-patterns and demand forecasts.To gain insights into its current focus,status,and emerging themes,this study analyzed 876 articles published between 2015 and 2022,retrieved from the Web of Science database.Leveraging CiteSpace visualization software,bibliometric techniques,and literature review methodologies,the investigation identified essential literature related to water prediction using machine learning and deep learning approaches.Through a comprehensive analysis,the study identified significant countries,institutions,authors,journals,and keywords in this field.By exploring this data,the research mapped out prevailing trends and cutting-edge areas,providing valuable insights for researchers and practitioners involved in water prediction through machine learning and deep learning.The study aims to guide future inquiries by highlighting key research domains and emerging areas of interest. 展开更多
关键词 Water forecasting Machine learning/deep learning Web of Science VISUALIZATION
下载PDF
Deep Learning Hybrid Model for Lithium-Ion Battery Aging Estimation and Prediction
7
作者 项越 姜波 戴海峰 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第S01期215-222,共8页
The degradation process of lithium-ion batteries is intricately linked to their entire lifecycle as power sources and energy storage devices,encompassing aspects such as performance delivery and cycling utilization.Co... The degradation process of lithium-ion batteries is intricately linked to their entire lifecycle as power sources and energy storage devices,encompassing aspects such as performance delivery and cycling utilization.Consequently,the accurate and expedient estimation or prediction of the aging state of lithium-ion batteries has garnered extensive attention.Nonetheless,prevailing research predominantly concentrates on either aging estimation or prediction,neglecting the dynamic fusion of both facets.This paper proposes a hybrid model for capacity aging estimation and prediction based on deep learning,wherein salient features highly pertinent to aging are extracted from charge and discharge relaxation processes.By amalgamating historical capacity decay data,the model dynamically furnishes estimations of the present capacity and forecasts of future capacity for lithium-ion batteries.Our approach is validated against a novel dataset involving charge and discharge cycles at varying rates.Specifically,under a charging condition of 0.25 C,a mean absolute percentage error(MAPE)of 0.29%is achieved.This outcome underscores the model's adeptness in harnessing relaxation processes commonly encountered in the real world and synergizing with historical capacity records within battery management systems(BMS),thereby affording estimations and prognostications of capacity decline with heightened precision. 展开更多
关键词 lithium-ion battery state of health deep learning relaxation process
下载PDF
Deep learning-based inpainting of saturation artifacts in optical coherence tomography images 被引量:2
8
作者 Muyun Hu Zhuoqun Yuan +2 位作者 Di Yang Jingzhu Zhao Yanmei Liang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期1-10,共10页
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ... Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness. 展开更多
关键词 Optical coherence tomography saturation artifacts deep learning image inpainting.
下载PDF
Well-defined high entropy-metal nanoparticles:Detection of the multi-element particles by deep learning 被引量:1
9
作者 Manar Alnaasan Wail Al Zoubi +3 位作者 Salh Alhammadi Jee-Hyun Kang Sungho Kim Young Gun Ko 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期262-273,共12页
Characterizing and control the chemical compositions of multi-element particles as single metal nanoparticles(mNPs) on the surfaces of catalytic metal oxide supports is challenging.This can be attributed to the hetero... Characterizing and control the chemical compositions of multi-element particles as single metal nanoparticles(mNPs) on the surfaces of catalytic metal oxide supports is challenging.This can be attributed to the heterogeneity and large size at the nanoscale,the poorly defined catalyst nanostructure,and thermodynamic immiscibility of the strongly repelling metallic elements.To address these challenges,an ultrasonic-assisted coincident electro-oxidation-reduction-precipitation(U-SEO-P) is presented to fabricate ultra-stable PtRuAgCoCuP NPs,which produces numerous active intermediates and induces strong metal-support interactions.To sort the active high-entropy mNPs,individual NPs are described on the support surface and the role of deep learning in understanding/predicting the features of PtRuAgCoCu@TiO_(x) catalysts is explained.Notably,this deep learning approach required minimal to no human input.The as-prepared PtRuAgCoCu@TiO_(x) catalysts can be used to catalyze various important chemical reactions,such as a high reduction conversion(100% in 30 s),with no loss of catalytic activity even after 20 cycles of nitroarene and ketone/aldehyde,which is several times higher than commercial Pt@TiO_(x) owing to individual PtRuAgCoCuP NPs on TiO_(x) surface.In this study,we present the "Totally Defined Catalysis" concept,which has enormous potential for the advancement of high-activity catalysts in the reduction of organic compounds. 展开更多
关键词 Metal nanoparticles deep learning CATALYST REDUCTION
下载PDF
A credibility-aware swarm-federated deep learning framework in internet of vehicles 被引量:1
10
作者 Zhe Wang Xinhang Li +2 位作者 Tianhao Wu Chen Xu Lin Zhang 《Digital Communications and Networks》 SCIE CSCD 2024年第1期150-157,共8页
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead... Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations. 展开更多
关键词 Swarm learning Federated deep learning Internet of vehicles PRIVACY EFFICIENCY
下载PDF
Assessments of Data-Driven Deep Learning Models on One-Month Predictions of Pan-Arctic Sea Ice Thickness 被引量:1
11
作者 Chentao SONG Jiang ZHU Xichen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1379-1390,共12页
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma... In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications. 展开更多
关键词 Arctic sea ice thickness deep learning spatiotemporal sequence prediction transfer learning
下载PDF
UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach 被引量:1
12
作者 Jiawen Kang Junlong Chen +6 位作者 Minrui Xu Zehui Xiong Yutao Jiao Luchao Han Dusit Niyato Yongju Tong Shengli Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期430-445,共16页
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers... Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses. 展开更多
关键词 AVATAR blockchain metaverses multi-agent deep reinforcement learning transformer UAVS
下载PDF
ST-LSTM-SA:A New Ocean Sound Velocity Field Prediction Model Based on Deep Learning 被引量:1
13
作者 Hanxiao YUAN Yang LIU +3 位作者 Qiuhua TANG Jie LI Guanxu CHEN Wuxu CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1364-1378,共15页
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia... The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables. 展开更多
关键词 sound velocity field spatiotemporal prediction deep learning self-allention
下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
14
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
Deep learning for joint channel estimation and feedback in massive MIMO systems 被引量:1
15
作者 Jiajia Guo Tong Chen +3 位作者 Shi Jin Geoffrey Ye Li Xin Wang Xiaolin Hou 《Digital Communications and Networks》 SCIE CSCD 2024年第1期83-93,共11页
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th... The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors. 展开更多
关键词 Channel estimation CSI feedback deep learning Massive MIMO FDD
下载PDF
A Deep Learning Approach for Forecasting Thunderstorm Gusts in the Beijing–Tianjin–Hebei Region 被引量:1
16
作者 Yunqing LIU Lu YANG +3 位作者 Mingxuan CHEN Linye SONG Lei HAN Jingfeng XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1342-1363,共22页
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b... Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China. 展开更多
关键词 thunderstorm gusts deep learning weather forecasting convolutional neural network TRANSFORMER
下载PDF
An Intelligent SDN-IoT Enabled Intrusion Detection System for Healthcare Systems Using a Hybrid Deep Learning and Machine Learning Approach 被引量:1
17
作者 R Arthi S Krishnaveni Sherali Zeadally 《China Communications》 SCIE CSCD 2024年第10期267-287,共21页
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the... The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches. 展开更多
关键词 deep neural network healthcare intrusion detection system IOT machine learning software-defined networks
下载PDF
A Hybrid Deep Learning and Machine Learning-Based Approach to Classify Defects in Hot Rolled Steel Strips for Smart Manufacturing 被引量:1
18
作者 Tajmal Hussain Jungpyo Hong Jongwon Seok 《Computers, Materials & Continua》 SCIE EI 2024年第8期2099-2119,共21页
Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an i... Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an important part of today’s smart manufacturing process,effectively reducing costs and enhancing operational efficiency.As technology in the industry becomes more advanced,identifying and classifying defects has become an essential element in ensuring the quality of products during the manufacturing process.In this study,we introduce a CNN model for classifying defects on hot-rolled steel strip surfaces using hybrid deep learning techniques,incorporating a global average pooling(GAP)layer and a machine learning-based SVM classifier,with the aim of enhancing accuracy.Initially,features are extracted by the VGG19 convolutional block.Then,after processing through the GAP layer,the extracted features are fed to the SVM classifier for classification.For this purpose,we collected images from publicly available datasets,including the Xsteel surface defect dataset(XSDD)and the NEU surface defect(NEU-CLS)datasets,and we employed offline data augmentation techniques to balance and increase the size of the datasets.The outcome of experiments shows that the proposed methodology achieves the highest metrics score,with 99.79%accuracy,99.80%precision,99.79%recall,and a 99.79%F1-score for the NEU-CLS dataset.Similarly,it achieves 99.64%accuracy,99.65%precision,99.63%recall,and a 99.64%F1-score for the XSDD dataset.A comparison of the proposed methodology to the most recent study showed that it achieved superior results as compared to the other studies. 展开更多
关键词 Smart manufacturing steel defect detection deep learning CNN
下载PDF
Automatic detection of small bowel lesions with different bleeding risks based on deep learning models 被引量:1
19
作者 Rui-Ya Zhang Peng-Peng Qiang +5 位作者 Ling-Jun Cai Tao Li Yan Qin Yu Zhang Yi-Qing Zhao Jun-Ping Wang 《World Journal of Gastroenterology》 SCIE CAS 2024年第2期170-183,共14页
BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some ... BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups. 展开更多
关键词 Artificial intelligence deep learning Capsule endoscopy Image classification Object detection Bleeding risk
下载PDF
A performance-based hybrid deep learning model for predicting TBM advance rate using Attention-ResNet-LSTM 被引量:1
20
作者 Sihao Yu Zixin Zhang +2 位作者 Shuaifeng Wang Xin Huang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期65-80,共16页
The technology of tunnel boring machine(TBM)has been widely applied for underground construction worldwide;however,how to ensure the TBM tunneling process safe and efficient remains a major concern.Advance rate is a k... The technology of tunnel boring machine(TBM)has been widely applied for underground construction worldwide;however,how to ensure the TBM tunneling process safe and efficient remains a major concern.Advance rate is a key parameter of TBM operation and reflects the TBM-ground interaction,for which a reliable prediction helps optimize the TBM performance.Here,we develop a hybrid neural network model,called Attention-ResNet-LSTM,for accurate prediction of the TBM advance rate.A database including geological properties and TBM operational parameters from the Yangtze River Natural Gas Pipeline Project is used to train and test this deep learning model.The evolutionary polynomial regression method is adopted to aid the selection of input parameters.The results of numerical exper-iments show that our Attention-ResNet-LSTM model outperforms other commonly-used intelligent models with a lower root mean square error and a lower mean absolute percentage error.Further,parametric analyses are conducted to explore the effects of the sequence length of historical data and the model architecture on the prediction accuracy.A correlation analysis between the input and output parameters is also implemented to provide guidance for adjusting relevant TBM operational parameters.The performance of our hybrid intelligent model is demonstrated in a case study of TBM tunneling through a complex ground with variable strata.Finally,data collected from the Baimang River Tunnel Project in Shenzhen of China are used to further test the generalization of our model.The results indicate that,compared to the conventional ResNet-LSTM model,our model has a better predictive capability for scenarios with unknown datasets due to its self-adaptive characteristic. 展开更多
关键词 Tunnel boring machine(TBM) Advance rate deep learning Attention-ResNet-LSTM Evolutionary polynomial regression
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部