期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Semi-supervised least squares support vector machine algorithm:application to offshore oil reservoir 被引量:1
1
作者 罗伟平 李洪奇 石宁 《Applied Geophysics》 SCIE CSCD 2016年第2期406-415,421,共11页
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th... At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area. 展开更多
关键词 Semi-supervised learning least squares support vector machine seismic attributes reservoir prediction
下载PDF
Modeling of Isomerization of C_8 Aromatics by Online Least Squares Support Vector Machine 被引量:7
2
作者 李丽娟 苏宏业 褚建 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第3期437-444,共8页
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling... The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable. 展开更多
关键词 least squares support vector machine multi-variable ONLINE SPARSENESS ISOMERIZATION
下载PDF
Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature 被引量:6
3
作者 Mohammad Mesbah Ebrahim Soroush Mashallah Rezakazemi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1238-1248,共11页
Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.... Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper, we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature(HFT) in a wide range of natural gas mixtures. A total number of 279 experimental data points were extracted from open literature to develop the LSSVM. The input parameters were chosen based on the hydrate structure that each gas species form. The modeling resulted in a robust algorithm with the squared correlation coefficients(R^2) of 0.9918. Aside from the excellent statistical parameters of the model, comparing proposed LSSVM with some of conventional correlations showed its supremacy, particularly in the case of sour gases with high H_2S concentrations, where the model surpasses all correlations and existing thermodynamic models. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach was performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model. 展开更多
关键词 Hydrate formation temperature(HFT) Natural gas Sour gases least squares support vector machine Outlier diagnostics Leverage approach
下载PDF
Temperature prediction control based on least squares support vector machines 被引量:5
4
作者 BinLIU HongyeSU +1 位作者 WeihuaHUANG JianCHU 《控制理论与应用(英文版)》 EI 2004年第4期365-370,共6页
A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant i... A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant is built by LS-SVM with radial basis function (RBF) kernel. In the process of system running, the off-line model is linearized at each sampling instant, and the generalized prediction control (GPC) algorithm is employed to implement the prediction control for the controlled plant. The obtained algorithm is applied to a boiler temperature control system with complicated nonlinearity and large time delay. The results of the experiment verify the effectiveness and merit of the algorithm. 展开更多
关键词 Predictive control least squares support vector machines RBF kernel function Generalized prediction control
下载PDF
New predictive control algorithms based on Least Squares Support Vector Machines 被引量:3
5
作者 刘斌 苏宏业 褚健 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第5期440-446,共7页
Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlin... Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms. 展开更多
关键词 least squares support vector machines Linear kernel function RBF kernel function Generalized predictive control
下载PDF
Discussion About Nonlinear Time Series Prediction Using Least Squares Support Vector Machine 被引量:3
6
作者 XURui-Rui BIANGuo-Xin GAOChen-Feng CHENTian-Lun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期1056-1060,共5页
The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction. First, the parameter gamma and multi-step prediction capabilities of the LS-SVM network are discussed. Then we e... The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction. First, the parameter gamma and multi-step prediction capabilities of the LS-SVM network are discussed. Then we employ clustering method in the model to prune the number of the support values.. The learning rate and the capabilities of filtering noise for LS-SVM are all greatly improved. 展开更多
关键词 least squares support vector machine nonlinear time series PREDICTION CLUSTERING
下载PDF
Sparse representation based on projection method in online least squares support vector machines 被引量:2
7
作者 Lijuan LI Hongye SU Jian CHU 《控制理论与应用(英文版)》 EI 2009年第2期163-168,共6页
A sparse approximation algorithm based on projection is presented in this paper in order to overcome the limitation of the non-sparsity of least squares support vector machines (LS-SVM). The new inputs are projected... A sparse approximation algorithm based on projection is presented in this paper in order to overcome the limitation of the non-sparsity of least squares support vector machines (LS-SVM). The new inputs are projected into the subspace spanned by previous basis vectors (BV) and those inputs whose squared distance from the subspace is higher than a threshold are added in the BV set, while others are rejected. This consequently results in the sparse approximation. In addition, a recursive approach to deleting an exiting vector in the BV set is proposed. Then the online LS-SVM, sparse approximation and BV removal are combined to produce the sparse online LS-SVM algorithm that can control the size of memory irrespective of the processed data size. The suggested algorithm is applied in the online modeling of a pH neutralizing process and the isomerization plant of a refinery, respectively. The detailed comparison of computing time and precision is also given between the suggested algorithm and the nonsparse one. The results show that the proposed algorithm greatly improves the sparsity just with little cost of precision. 展开更多
关键词 least squares support vector machines PROJECTION SPARSITY pH neutralizing process ISOMERIZATION
下载PDF
Least Squares Support Vector Machine Based Real-Time Fault Diagnosis Model for Gas Path Parameters of Aero Engines 被引量:1
8
作者 王旭辉 黄圣国 +2 位作者 王烨 刘永建 舒平 《Journal of Southwest Jiaotong University(English Edition)》 2009年第1期22-26,共5页
Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern sear... Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern search method. Finally, by decoding aircraft communication addressing and reporting system (ACARS) report, a real-time cruise data set is acquired, and the diagnosis model is adopted to process data. In contrast to the radial basis function (RBF) neutral network, LS-SVM is more suitable for real-time diagnosis of gas turbine engine. 展开更多
关键词 Engine diagnosis Gas path least squares support vector machine Pattern search
下载PDF
Design of Ballistic Consistency Based on Least Squares Support Vector Machine and Particle Swarm Optimization
9
作者 张宇宸 杜忠华 戴炜 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第5期549-554,共6页
In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal f... In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal firing table is the ballistic matching for two types of projectiles.Therefore,a method is proposed in the process of designing new type of projectile.The least squares support vector machine is utilized to build the ballistic trajectory model of the original projectile,thus it is viable to compare the two trajectories.Then the particle swarm optimization is applied to find the combination of trajectory parameters which meet the criterion of ballistic matching best.Finally,examples show the proposed method is valid and feasible. 展开更多
关键词 ballistic matching least squares support vector machine particle swarm optimization curve fitting
下载PDF
Application of Least Squares Support Vector Machine for Regression to Reliability Analysis 被引量:18
10
作者 郭秩维 白广忱 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第2期160-166,共7页
In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functiona... In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functional relationship between the state variable and basic variables in reliability design. The algorithm has treated successfully some problems of implicit performance function in reliability analysis. However, its theoretical basis of empirical risk minimization narrows its range of applications for... 展开更多
关键词 mechanism design of spacecraft support vector machine for regression least squares support vector machine for regression Monte Carlo method RELIABILITY implicit performance function
原文传递
Unstable unsteady aerodynamic modeling based on least squares support vector machines with general excitation 被引量:7
11
作者 Senlin CHEN Zhenghong GAO +2 位作者 Xinqi ZHU Yiming DU Chao PANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2499-2509,共11页
Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hy... Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hysteresis loop that exists in the actual maneuvering process of the aircraft.Here,an excitation input suitable for nonlinear system identification is introduced to model unsteady aerodynamic forces with any motion in the amplitude and frequency ranges based on the Least Squares Support Vector Machines(LS-SVMs).In the selection of the input form,avoiding the use of reduced frequency as a parameter makes the model more universal.After model training is completed,the method is applied to predict the lift coefficient,drag coefficient and pitching moment coefficient of the RAE2822 airfoil,in sine and sweep motions under the conditions of plunging and pitching at Mach number 0.8.The predicted results of the initial unstable process and the final stable process are in close agreement with the Computational Fluid Dynamics(CFD)data,demonstrating the feasibility of the model for nonlinear unsteady aerodynamics modeling and the effectiveness of the input design approach. 展开更多
关键词 Aerodynamics models Forced vibration Input design least squares support vector machines Nonlinear system System identification Unsteady aerodynamics
原文传递
Novel approach of crater detection by crater candidate region selection and matrix-pattern-oriented least squares support vector machine 被引量:4
12
作者 Ding Meng Cao Yunfeng Wu Qingxian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期385-393,共9页
Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop cra... Impacted craters are commonly found on the surface of planets, satellites, asteroids and other solar system bodies. In order to speed up the rate of constructing the database of craters, it is important to develop crater detection algorithms. This paper presents a novel approach to automatically detect craters on planetary surfaces. The approach contains two parts: crater candidate region selection and crater detection. In the first part, crater candidate region selection is achieved by Kanade-Lucas-Tomasi (KLT) detector. Matrix-pattern-oriented least squares support vector machine (MatLSSVM), as the matrixization version of least square support vector machine (SVM), inherits the advantages of least squares support vector machine (LSSVM), reduces storage space greatly and reserves spatial redundancies within each image matrix compared with general LSSVM. The second part of the approach employs MatLSSVM to design classifier for crater detection. Experimental results on the dataset which comprises 160 preprocessed image patches from Google Mars demonstrate that the accuracy rate of crater detection can be up to 88%. In addition, the outstanding feature of the approach introduced in this paper is that it takes resized crater candidate region as input pattern directly to finish crater detection. The results of the last experiment demonstrate that MatLSSVM-based classifier can detect crater regions effectively on the basis of KLT-based crater candidate region selection. 展开更多
关键词 Crater candidate region Crater detection algorithm Kanade–Lucas–Tomasi detector least squares support vector machine Matrixization
原文传递
Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines 被引量:5
13
作者 Qing-chao WANG Jian-zhong ZHANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第1期25-35,共11页
This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed ... This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed using least squares support vector machines (LSSVM).Input-output data from the first principle model of the pH neutralization process are used for the Wiener model identification.Simulation results show that the proposed Wiener model has higher prediction accuracy than Laguerre-support vector regression (SVR) Wiener models,Laguerre-polynomial Wiener models,and linear Laguerre models.The identified Wiener model is used here for nonlinear model predictive control (NMPC) of the pH neutralization process.The set-point tracking performance of the proposed NMPC is compared with those of the Laguerre-SVR Wiener model based NMPC,Laguerre-polynomial Wiener model based NMPC,and linear model predictive control (LMPC).Validation results show that the proposed NMPC outperforms the other three controllers. 展开更多
关键词 Wiener model Nonlinear model predictive control (NMPC) pH neutralization process Laguerre filters least squares support vector machines (LSSVM)
原文传递
Simulation and Prediction of Alkalinity in Sintering Process Based on Grey Least Squares Support Vector Machine 被引量:3
14
作者 SONG Qiang WANG Ai-min 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第5期1-6,共6页
The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very ... The prediction of the alkalinity is difficult during the sintering process. Whether or not the level of the alkalinity of sintering process is successful is directly related to the quality of sinter. There is no very good method for predicting the alkalinity by now owing to the high complexity, high nonlinearity, strong coupling, high time delay, and etc. Therefore, a new technique, the grey squares support machine, was introduced. The grey support vector machine model of the alkalinity enabled the development of new equation and algorithm to predict the alkalinity. During modelling, the fluctuation of data sequence was weakened by the grey theory and the support vector machine was capable of processing nonlinear adaptable information, and the grey support vector machine has a combination of those advantages. The results revealed that the alkalinity of sinter could be accurately predicted using this model by reference to small sample and information. The experimental results showed that the grey support vector machine model was effective and practical owing to the advantages of high precision, less samples required, and simple calculation. 展开更多
关键词 ALKALINITY SINTER grey least squares support vector machine PREDICTION sintering process grey model
原文传递
Segmentation algorithm for Hangzhou white chrysanthemums based on least squares support vector machine 被引量:3
15
作者 Qinghua Yang Shaoliang Luo +2 位作者 Chun Chang Yi Xun Guanjun Bao 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第4期127-134,共8页
In order to realize the visual positioning for Hangzhou white chrysanthemums harvesting robot in natural environment,a color image segmentation method for Hangzhou white chrysanthemum based on least squares support ve... In order to realize the visual positioning for Hangzhou white chrysanthemums harvesting robot in natural environment,a color image segmentation method for Hangzhou white chrysanthemum based on least squares support vector machine(LS-SVM)was proposed.Firstly,bilateral filter was used to filter the RGB channels image respectively to eliminate noise.Then the pixel-level color feature and texture feature of the image,which was used as input of LS-SVM model(classifier)and SVM model(classifier),were extracted via RGB value of image and gray level co-occurrence matrix.Finally,the color image was segmented with the trained LS-SVM model(classifier)and SVM model(classifier)separately.The experimental results showed that the trained LS-SVM model and SVM model could effectively segment the images of the Hangzhou white chrysanthemums from complicated background taken under three illumination conditions such as front-lighting,back-lighting and overshadow,with the accuracy of above 90%.When segmenting an image,the SVM algorithm required 1.3 s,while the LS-SVM algorithm proposed in this paper just needed 0.7 s,which was better than the SVM algorithm obviously.The picking experiment was carried out and the results showed that the implementation of the proposed segmentation algorithm on the picking robot could achieve 81%picking success rate. 展开更多
关键词 bilateral filter least squares support vector machine(LS-SVM) image segmentation Hangzhou white chrysanthemum illumination intensity
原文传递
Nonlinear multifunctional sensor signal reconstruction based on least squares support vector machines and total least squares algorithm 被引量:2
16
作者 Xin LIU Guo WEI +1 位作者 Jin-wei SUN Dan LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期497-503,共7页
Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. I... Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. In this paper, a novel training algorithm based on total least squares (TLS) for an LS-SVM is presented and applied to multifunctional sensor signal reconstruction. For three different nonlinearities of a multifunctional sensor model, the reconstruction accuracies of input signals are 0.001 36%, 0.031 84% and 0.504 80%, respectively. The experimental results demonstrate the higher reliability and accuracy of the proposed method for multifunctional sensor signal reconstruction than the original LS-SVM training algorithm, and verify the feasibility and stability of the proposed method. 展开更多
关键词 least squares support vector machine Total least squares Multifunctional sensor Signal reconstruction
原文传递
Unbalanced classification method using least squares support vector machine with sparse strategy for steel surface defects with label noise
17
作者 Li-ming Liu Mao-xiang Chu +1 位作者 Rong-fen Gong Xin-yu Qi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第12期1407-1419,共13页
Least squares support vector machine (LS-SVM) plays an important role in steel surface defects classification because of its high speed. However, the defect samples obtained from the real production line may be noise.... Least squares support vector machine (LS-SVM) plays an important role in steel surface defects classification because of its high speed. However, the defect samples obtained from the real production line may be noise. LS-SVM suffers from the poor classification performance in the classification stage when there are noise samples. Thus, in the classification stage, it is necessary to design an effective algorithm to process the defects dataset obtained from the real production line. To this end, an adaptive weight function was employed to reduce the adverse effect of noise samples. Moreover, although LSSVM offers fast speed, it still suffers from a high computational complexity if the number of training samples is large. The time for steel surface defects classification should be as short as possible. Therefore, a sparse strategy was adopted to prune the training samples. Finally, since the steel surface defects classification belongs to unbalanced data classification, LSSVM algorithm is not applicable. Hence, the unbalanced data information was introduced to improve the classification performance. Comprehensively considering above-mentioned factors, an improved LS-SVM classification model was proposed, termed as ILS-SVM. Experimental results show that the new algorithm has the advantages of high speed and great anti-noise ability. 展开更多
关键词 Steel surface defect least squares support vector machine ANTI-NOISE SPARSENESS Unbalanced data
原文传递
Fault diagnosis using a probability least squares support vector classification machine 被引量:4
18
作者 GAO Yang, WANG Xuesong, CHENG Yuhu, PAN Jie School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou 221116, China 《Mining Science and Technology》 EI CAS 2010年第6期917-921,共5页
Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines ... Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines is addressed by a proposed Probability Least Squares Support Vector Classification Machine (PLSSVCM). Samples that cannot be definitely determined as belonging to one class will be assigned to a class by the PLSSVCM based on a probability value. This gives the classification results both a qualitative explanation and a quantitative evaluation. Simulation results of a fault diagnosis show that the correct rate of the PLSSVCM is 100%. Even though samples are noisy, the PLSSVCM still can effectively realize multi-class fault diagnosis of a roller bearing. The generalization property of the PLSSVCM is better than that of a neural network and a LSSVCM. 展开更多
关键词 fault diagnosis PROBABILITY least squares support vector classification machine roller bearing
下载PDF
Application of least squares vector machines in modelling water vapor and carbon dioxide fluxes over a cropland 被引量:1
19
作者 秦钟 于强 +2 位作者 李俊 吴志毅 胡秉民 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第6期491-495,共5页
Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a s... Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a summer maize field using the dataset obtained in the North China Plain with eddy covariance technique. The performances of the LS-SVMs were compared to the corresponding models obtained with radial basis function (RBF) neural networks. The results indicated the trained LS-SVMs with a radial basis function kernel had satisfactory performance in modelling surface fluxes; its excellent approximation and generalization property shed new light on the study on complex processes in ecosystem. 展开更多
关键词 least squares support vector machines (LS-SVMs) Water vapor and carbon dioxide fluxes exchange Radial basis function (RBF) neural networks
下载PDF
Prediction method for surface finishing of spiral bevel gear tooth based on least square support vector machine
20
作者 马宁 徐文骥 +2 位作者 王续跃 魏泽飞 庞桂兵 《Journal of Central South University》 SCIE EI CAS 2011年第3期685-689,共5页
The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was ... The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage. 展开更多
关键词 pulse electrochemical finishing (PECF) surface roughness least squares support vector machine (LSSVM) PREDICTION
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部