High-speed magnitude approximation algorithms for complex vectors are discussed intensively. The performance and the convergence speed of these approximation algorithms are analyzed. For the polygon fitting algorithms...High-speed magnitude approximation algorithms for complex vectors are discussed intensively. The performance and the convergence speed of these approximation algorithms are analyzed. For the polygon fitting algorithms, the approximation formula under the least mean square error criterion is derived. For the iterative algorithms, a modified CORDIC (coordinate rotation digital computer) algorithm is developed. This modified CORDIC algorithm is proved to be with a maximum relative error about one half that of the original CORDIC algorithm. Finally, the effects of the finite register length on these algorithms are also concerned, which shows that 9 to 12-bit coefficients are sufficient for practical applications.展开更多
基金This project was supported by the Natural Science Foundation of Shaanxi Province.
文摘High-speed magnitude approximation algorithms for complex vectors are discussed intensively. The performance and the convergence speed of these approximation algorithms are analyzed. For the polygon fitting algorithms, the approximation formula under the least mean square error criterion is derived. For the iterative algorithms, a modified CORDIC (coordinate rotation digital computer) algorithm is developed. This modified CORDIC algorithm is proved to be with a maximum relative error about one half that of the original CORDIC algorithm. Finally, the effects of the finite register length on these algorithms are also concerned, which shows that 9 to 12-bit coefficients are sufficient for practical applications.