期刊文献+
共找到182篇文章
< 1 2 10 >
每页显示 20 50 100
采用改进遗传算法优化LS-SVM逆系统的外转子无铁心无轴承永磁同步发电机解耦控制 被引量:1
1
作者 朱熀秋 沈良瑜 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2037-2046,I0032,共11页
为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(leas... 为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(least square support vector machine,LS-SVM)逆系统的解耦控制策略。首先,基于ORC-BPMSG的结构及工作原理,推导其数学模型,并分析其可逆性。其次,建立LS-SVM回归方程,并采用IGA优化LS-SVM的性能参数,从而训练得到逆系统。然后,将逆系统与原系统串接,形成伪线性系统,实现了ORC-BPMSG的线性化和解耦。最后,将提出的控制方法与传统LS-SVM逆系统控制方法进行对比仿真和实验。仿真和实验结果表明:所提出的控制策略可以较好地实现ORC-BPMSG输出电压和悬浮力、以及悬浮力之间的解耦控制。 展开更多
关键词 外转子无铁心无轴承永磁同步发电机 最小二乘支持向量机 逆系统 改进遗传算法 解耦控制
下载PDF
基于改进SVM的电力工程造价预测
2
作者 刘云 李维嘉 +2 位作者 赵子豪 董振亮 陈志宾 《沈阳工业大学学报》 CAS 北大核心 2024年第4期367-372,共6页
针对支持向量机求解速度较慢且用于预测电力工程造价的性能不理想等问题,提出了一种基于改进SVM的电力工程造价预测模型。该模型全面考虑了电力工程成本的组成要素并进行参数归一化处理,利用最小二乘估计改进SVM模型,同时采用遗传算法求... 针对支持向量机求解速度较慢且用于预测电力工程造价的性能不理想等问题,提出了一种基于改进SVM的电力工程造价预测模型。该模型全面考虑了电力工程成本的组成要素并进行参数归一化处理,利用最小二乘估计改进SVM模型,同时采用遗传算法求解LSSVM的参数最优值,并通过优化后的GA-LSSVM模型实现对电力工程成本的预测。基于MATLAB仿真平台的仿真实验结果表明,模型预测的工程成本与实际值较为接近,归一化均方误差与平均绝对百分比误差分别为18.34万元和3.58%,且预测时间仅为256 ms,证明了其整体性能优于其他对比模型。 展开更多
关键词 电力工程 造价预测 支持向量机 最小二乘估计 遗传算法 GA-LSSVM模型 归一化处理 误差分析
下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:1
3
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小二乘支持向量机 经验模态分解 粒子群优化算法 遗传算法
下载PDF
基于Fast ICA和改进LSSVM的短期风速预测 被引量:5
4
作者 孙斌 姚海涛 +2 位作者 李田 刘袖 刘博 《电力系统及其自动化学报》 CSCD 北大核心 2014年第1期22-27,共6页
对风速的准确预测能有效减轻风电场对整个电网的不利影响,同时能提高风电场在电力市场中的竞争能力。首先提出一种基于快速独立分量分析算法和改进最小二乘支持向量机的风速预测模型,对运用fast ICA算法对风速时间序列进行多层分解,得... 对风速的准确预测能有效减轻风电场对整个电网的不利影响,同时能提高风电场在电力市场中的竞争能力。首先提出一种基于快速独立分量分析算法和改进最小二乘支持向量机的风速预测模型,对运用fast ICA算法对风速时间序列进行多层分解,得到一系列的独立分量;然后运用改进最小二乘支持向量机模型对分解后的各独立分量风速进行预测;最后对各预测结果进行叠加作为最终的预测风速。算例结果表明,该预测模型能准确进行短期风速的预测。 展开更多
关键词 风电场 风速预测 fast ICA算法 最小二乘支持向量机
下载PDF
基于LSSVM-GA的沟灌入渗参数与糙率估算与验证
5
作者 周雯 白丹 +2 位作者 李一博 马鑫 白雪丽 《农业工程学报》 EI CAS CSCD 北大核心 2024年第18期62-69,共8页
入渗参数和糙率是沟灌设计和管理中需要确定的重要基本参数。该研究基于WinSRFR软件模拟结果构建样本集,通过最小二乘支持向量机(least squares support vector machines,LSSVM)回归模型来映射水流推进时间、消退时间与入渗参数、糙率... 入渗参数和糙率是沟灌设计和管理中需要确定的重要基本参数。该研究基于WinSRFR软件模拟结果构建样本集,通过最小二乘支持向量机(least squares support vector machines,LSSVM)回归模型来映射水流推进时间、消退时间与入渗参数、糙率之间的非线性关系,并在此基础上提出了结合最小二乘支持向量机和遗传算法(least squares support vector machines-genetic algorithm,LSSVM-GA)的参数估算方法,即利用LSSVM回归模型构建目标函数,并利用GA获得入渗参数和糙率的最优值。在4组尾端封闭沟试验基础上,将LSSVM-GA法与多元非线性回归(multiple nonlinear regression,MNR)及WinSRFR中的Merriam-Keller post-irrigation volume balance analysis(MK-PIVB)进行对比,结果表明,LSSVM-GA法估算的参数对进退水过程的拟合效果较优,其模拟的推进和消退过程均方根误差分别介于1.06~2.12 min和2.28~3.11 min之间,表明LSSVM-GA在估算入渗参数和糙率方面的可靠性,这有助于获得更精确的灌水技术要素,进而提高沟灌性能。 展开更多
关键词 灌溉 入渗 遗传算法 参数 糙率 最小二乘支持向量机回归
下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型
6
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小二乘支持向量机 遗传算法
下载PDF
一种稳健最小二乘支持向量机GNSS-IR土壤湿度反演方法
7
作者 王式太 蒋威 +2 位作者 杨可心 马岳 姜新伟 《遥感信息》 CSCD 北大核心 2024年第2期43-51,共9页
全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依... 全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依赖初值设定。文章先使用遗传算法求解出延迟相位粗略值,再将该数值作为信赖域的初值用于迭代计算,提升了部分卫星延迟相位的求解精度及稳定性。此外,针对多径信噪比序列易受环境因素影响引入粗差,进而影响模型反演精度,文章采用稳健最小二乘支持向量机作为反演模型,同时又考虑到多星融合的时空尺度优势,将该模型分别做了单星反演至五星融合反演,并与最小二乘支持向量机模型做对比。分析结果表明,当三星融合时该模型提升精度最为明显,MAE最高可降低15.6%,RMSE最高可降低12.0%。 展开更多
关键词 GNSS-IR 土壤湿度 遗传算法 多卫星融合 稳健最小二乘支持向量机
下载PDF
基于最小二乘支持向量机的火电厂烟气含氧量预测模型优化研究 被引量:4
8
作者 赵国钦 蓝茂蔚 +3 位作者 李杨 周元祥 江政纬 甘云华 《发电技术》 CSCD 2023年第4期534-542,共9页
烟气含氧量是锅炉运行的重要监控参数,也是反映燃烧设备与锅炉运行完善程度的重要依据。根据运行工况快速、准确地测量烟气含氧量,对于优化锅炉燃烧过程具有重要指导意义。以某电站的1000 MW超超临界锅炉的运行数据为基础,选取影响烟气... 烟气含氧量是锅炉运行的重要监控参数,也是反映燃烧设备与锅炉运行完善程度的重要依据。根据运行工况快速、准确地测量烟气含氧量,对于优化锅炉燃烧过程具有重要指导意义。以某电站的1000 MW超超临界锅炉的运行数据为基础,选取影响烟气排放的31个因素,分别采用交叉验证(cross validation,CV)、粒子群优化(particle swarm optimization,PSO)算法、遗传算法(genetic algorithm,GA)寻找最小二乘支持向量机(least squares support vector machine,LSSVM)模型的最佳参数,建立烟气含氧量预测模型。研究结果表明:相对于PSO-LSSVM和CV-LSSVM模型,GA-LSSVM预测模型对烟气含氧量具有更好的预测能力,具有预测精度高、泛化能力好、鲁棒性强等优点,拟合预测的相对误差、均方误差分别为0.54%、0.23%,泛化预测的相对误差、均方误差分别为1.66%、2.13%,能够比较准确地对火电厂锅炉烟气含氧量进行测量,为锅炉燃烧系统进一步的优化运行奠定了基础。 展开更多
关键词 火电厂 最小二乘支持向量机(LSSVM) 粒子群优化(PSO)算法 遗传算法(GA) 交叉验证(CV)
下载PDF
基于机器学习的EPB盾构土仓压力预测方法研究 被引量:1
9
作者 王伟 王兴 +1 位作者 徐亮 王美艳 《人民长江》 北大核心 2023年第12期241-247,266,共8页
为了避免因土压平衡盾构(EPB)土仓压力失衡造成的掌子面失稳、地层缺失和地表沉降等后果,将GA算法嵌入到PSO算法进行参数优化,结合灰色理论建立基于灰色最小二乘支持向量机的土仓压力预测模型,并以实际工程为案例进行了验证。研究结果表... 为了避免因土压平衡盾构(EPB)土仓压力失衡造成的掌子面失稳、地层缺失和地表沉降等后果,将GA算法嵌入到PSO算法进行参数优化,结合灰色理论建立基于灰色最小二乘支持向量机的土仓压力预测模型,并以实际工程为案例进行了验证。研究结果表明:GA-PSO-GLSSVM土仓压力预测模型将总推力、刀盘扭矩、推进速度、螺旋机转速、螺旋机扭矩、注浆量6种掘进参数作为输入集,综合考虑了盾构掘进参数之间的相互影响,使预测模型更符合实际;该预测模型综合了GA算法的全局搜索能力、PSO算法的快速收敛能力和GM模型抗扰动能力,提高了复杂地层EPB土仓压力预测的精度;与其他预测模型预测结果的对比表明,GA-PSO-GLSSVM模型预测结果的均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、可决系数(R^(2))明显优于其他模型,预测结果拟合优度和精确度更高,对砂卵石这类复杂地层中EPB盾构土仓压力的预测具有显著的适用性。研究结果可为砂卵石地层EPB盾构施工掘进参数控制提供参考。 展开更多
关键词 砂卵石地层 土压平衡盾构 土仓压力 GLSSVM PSO GA
下载PDF
考虑温度累积效应下基于LS-SVMR电力负荷预测研究
10
作者 缪智伟 方睿 《汕头大学学报(自然科学版)》 2023年第3期42-51,共10页
基于广东省某地区2018—2022年每日最大负荷数据及同期该地区日气象要素资料,发现最高气温对最大负荷的影响具有累积效应,影响温度类型效益的因素主要是预测日最大气温以及持续高温的天数;文章建立了气温累积效应的日最高气温修正公式,... 基于广东省某地区2018—2022年每日最大负荷数据及同期该地区日气象要素资料,发现最高气温对最大负荷的影响具有累积效应,影响温度类型效益的因素主要是预测日最大气温以及持续高温的天数;文章建立了气温累积效应的日最高气温修正公式,并利用实例验证了最高气温累积效应对最大电力负荷的影响.面对96个时点负荷数据复杂时序性和非线性的特性,构建了一种基于最小二乘支持向量机(LS-SVMR)网络电负荷最大值的预测模型,该方法考虑了对负荷有影响的节假日与工作日、天气、温度等相关因素,将修正后的日最高气温及最大电力负荷作为输入层,应用基于遗传算法优化后的最小二乘支持向量机对最大电力负荷进行预测.模型预测结果表明:本文的模型预测精度比传统BP、RBF神经网络负荷预测方法,具有更高的预测精度,预测结果能更好地为电力调度及安全运行提供参考依据. 展开更多
关键词 短期负荷预测 遗传算法 最小二乘支持向量机 电负荷温度累积效应
下载PDF
运用EMD和GA-SVM的齿轮故障特征提取与选择 被引量:32
11
作者 李兵 张培林 +2 位作者 任国全 刘东升 米双山 《振动.测试与诊断》 EI CSCD 北大核心 2009年第4期445-448,共4页
针对齿轮故障特征提取,首先将齿轮箱振动信号进行经验模态分解,得到一组固有模态函数。计算各固有模态函数的能量和矩阵的奇异值,采用Shannon熵和Renyi熵度量能量和奇异值分布,构成原始特征子集。再采用遗传算法和最小二乘支持向量机的W... 针对齿轮故障特征提取,首先将齿轮箱振动信号进行经验模态分解,得到一组固有模态函数。计算各固有模态函数的能量和矩阵的奇异值,采用Shannon熵和Renyi熵度量能量和奇异值分布,构成原始特征子集。再采用遗传算法和最小二乘支持向量机的Wrapper方法选择最优特征子集。该方法能够利用较少的特征参数集准确判别齿轮故障,提高了齿轮故障诊断的精度与效率。 展开更多
关键词 齿轮 故障诊断 经验模态分解 遗传算法 最小二乘支持向量机
下载PDF
基于GA-LSSVM和近红外傅里叶变换的霉变板栗识别 被引量:34
12
作者 周竹 李小昱 +3 位作者 李培武 高云 展慧 刘洁 《农业工程学报》 EI CAS CSCD 北大核心 2011年第3期331-335,共5页
为克服板栗近红外光谱变量多、共线性强等缺点,该文对标准正态变量变换预处理后的板栗近红外光谱进行傅里叶变换,并用不同方法建模,提高识别精度。采用试探法提取近红外光谱傅里叶系数,建立了基于最小二乘支持向量机分类器的霉变板栗识... 为克服板栗近红外光谱变量多、共线性强等缺点,该文对标准正态变量变换预处理后的板栗近红外光谱进行傅里叶变换,并用不同方法建模,提高识别精度。采用试探法提取近红外光谱傅里叶系数,建立了基于最小二乘支持向量机分类器的霉变板栗识别模型。当提取前35点傅里叶系数时,板栗的平均识别正确率为93.56%;构造GA-LSSVM算法,建立的霉变板栗识别模型所用傅里叶系数减少为13点,对测试集中合格板栗、表面霉变板栗和内部霉变板栗的平均识别正确率分别为95.89%、100%和98.25%,板栗的总体平均识别正确率提高到97.54%。为霉变板栗的识别提供了快速鉴别分析方法。 展开更多
关键词 遗传算法(GA) 识别 傅里叶变换 板栗 近红外光谱 最小二乘支持向量机(LSSVM)
下载PDF
基于遗传算法最小二乘支持向量机的耕地变化预测 被引量:49
13
作者 张豪 罗亦泳 +1 位作者 张立亭 陈竹安 《农业工程学报》 EI CAS CSCD 北大核心 2009年第7期226-231,共6页
针对耕地变化内部规律与模拟方法进行研究,提出最小二乘支持向量机耕地变化预测方法,有效构建耕地变化与耕地变化影响因子之间复杂的非线性关系模型。利用遗传算法全局寻优功能优化最小二乘支持向量机内部参数,提高最小二乘支持向量机... 针对耕地变化内部规律与模拟方法进行研究,提出最小二乘支持向量机耕地变化预测方法,有效构建耕地变化与耕地变化影响因子之间复杂的非线性关系模型。利用遗传算法全局寻优功能优化最小二乘支持向量机内部参数,提高最小二乘支持向量机耕地变化预测模型精度。利用该模型对江苏无锡市1987-2000年期间耕地变化进行预测,并与多元回归、GM(1,1)、BP网络、支持向量机(SVM)耕地预测模型和实际调查耕地变化数据进行比较分析。预测精度评价结果证实,该方法耕地预测精度远高于多元回归、GM(1,1),BP网络模型,略高于SVM模型,但算法复杂度和计算效率远优于SVM预测模型,是一种有效的耕地变化预测方法。 展开更多
关键词 最小二乘支持向量机 遗传算法 耕地预测 影响因子 精度分析
下载PDF
基于最小二乘支持向量机的电站锅炉燃烧优化 被引量:104
14
作者 顾燕萍 赵文杰 吴占松 《中国电机工程学报》 EI CSCD 北大核心 2010年第17期91-97,共7页
高效、低污染是电站锅炉燃烧优化的目标。该文基于最小二乘支持向量机,建立了电站锅炉燃烧模型,实现了飞灰含碳量、排烟温度、NOx排放量等参数的软测量和锅炉效率的预测;对比了最小二乘支持向量机和BP神经网络模型的性能,对比结果表明,... 高效、低污染是电站锅炉燃烧优化的目标。该文基于最小二乘支持向量机,建立了电站锅炉燃烧模型,实现了飞灰含碳量、排烟温度、NOx排放量等参数的软测量和锅炉效率的预测;对比了最小二乘支持向量机和BP神经网络模型的性能,对比结果表明,最小二乘支持向量机具有训练时间短、泛化能力高等优点。提出2种锅炉燃烧优化方式,并以所建立的燃烧模型为基础,采用遗传算法对锅炉运行工况进行寻优,为分散控制系统基础控制层提供最佳的操作变量设定值。算例表明,文中所提出的燃烧优化方案可以有效提高电站锅炉效率和降低NOx排放量。 展开更多
关键词 燃烧优化 锅炉效率 NOX排放 最小二乘支持向量机 遗传算法
下载PDF
采用遗传算法优化最小二乘支持向量机参数的方法 被引量:50
15
作者 王克奇 杨少春 +1 位作者 戴天虹 白雪冰 《计算机应用与软件》 CSCD 2009年第7期109-111,共3页
支持向量机是建立在统计学习理论上的一种学习算法,较好地解决了小样本学习问题。由不同的参数和核函数构造的支持向量机在性能上存在很大差异,而在参数和核函数的选择上目前还没有明确的理论依据。针对支持向量机的参数选择问题,提出... 支持向量机是建立在统计学习理论上的一种学习算法,较好地解决了小样本学习问题。由不同的参数和核函数构造的支持向量机在性能上存在很大差异,而在参数和核函数的选择上目前还没有明确的理论依据。针对支持向量机的参数选择问题,提出了一种采用遗传算法优化最小二乘支持向量机参数的方法。结合LS-SVM lab工具箱,在MATLAB实验平台的仿真实验表明,该方法提高了支持向量机的参数选择效率,得到的参数对测试样本的分类结果是最优的,从而避免了人为设定参数的不足,同时缩短了优化时间。 展开更多
关键词 最小二乘支持向量机 遗传算法 参数选择 LS-SVMlab工具箱
下载PDF
基于LS-SVM与遗传算法的数控机床热误差辨识温度传感器优化策略 被引量:25
16
作者 林伟青 傅建中 +1 位作者 许亚洲 陈子辰 《光学精密工程》 EI CAS CSCD 北大核心 2008年第9期1682-1687,共6页
提出了一种在数控机床热误差辨识建模过程中利用最小二乘支持向量机结合遗传算法对温度传感器进行筛选与优化的新方法,对布置在一台数控车床上的温度传感器进行了优化。根据热模态理论,对传感器进行分组,利用最小二乘支持向量机方法构... 提出了一种在数控机床热误差辨识建模过程中利用最小二乘支持向量机结合遗传算法对温度传感器进行筛选与优化的新方法,对布置在一台数控车床上的温度传感器进行了优化。根据热模态理论,对传感器进行分组,利用最小二乘支持向量机方法构建数控机床热误差辨识模型,再根据遗传算法对其进行传感器优化布置。结果表明,遗传算法与最小二乘支持向量机方法的结合,很好地避免了温度测点的相互影响,保证了模型精度。该台数控车床的轴向建模平均绝对百分比误差为1.89%,径向建模平均绝对百分比误差为2.04%。传感器使用数量减少,节约了硬件成本,提高了辨识建模速度。 展开更多
关键词 数控机床 温度传感器 最小二乘支持向量机 遗传算法
下载PDF
基于遗传算法的多目标最小二乘支持向量机在近红外多组分定量分析中的应用 被引量:18
17
作者 徐冰 王星 +4 位作者 Dhaene Tom 史新元 Couckuyt Ivo 白雁 乔延江 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第3期638-642,共5页
近红外(NIR)定量分析通常涉及多个组分,采用遗传算法和自适应建模策略,建立了能够对多组分同时定量的多目标最小二乘支持向量机(LS-SVM),并将其应用于玉米中四个组分和连翘中两个活性成分的NIR分析。结果表明多目标遗传算法配合自适应... 近红外(NIR)定量分析通常涉及多个组分,采用遗传算法和自适应建模策略,建立了能够对多组分同时定量的多目标最小二乘支持向量机(LS-SVM),并将其应用于玉米中四个组分和连翘中两个活性成分的NIR分析。结果表明多目标遗传算法配合自适应建模策略可保证优化收敛于全局最优解。所建玉米多目标LS-SVM模型明显优于PLS1和PLS2模型;连翘多目标LS-SVM模型与PLS模型均可取得较好的校正和预测效果。两组数据中,径向基神经网络(RBFNN)模型均出现过拟合现象。多目标LS-SVM和单目标LS-SVM性能相近,但多目标LS-SVM建模运行一次即可得到结果,在NIR多组分定量分析中具有潜在应用优势。 展开更多
关键词 多目标最小二乘支持向量机 遗传算法 近红外 多组分定量 自适应建模
下载PDF
基于预数值计算的除雾器叶片结构优化设计 被引量:13
18
作者 乔宗良 周建新 +2 位作者 周卫庆 司风琪 徐治皋 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期76-82,共7页
为了优化脱硫波纹板除雾器叶片的结构设计,按照正交实验方法设计的工况,使用Fluent模拟不同结构参数和运行工况下除雾器叶片内部流场.以数值模拟结果为样本,建立了基于最小二乘支持向量机除雾效率和除雾器压降特性模型,模型回归值与数... 为了优化脱硫波纹板除雾器叶片的结构设计,按照正交实验方法设计的工况,使用Fluent模拟不同结构参数和运行工况下除雾器叶片内部流场.以数值模拟结果为样本,建立了基于最小二乘支持向量机除雾效率和除雾器压降特性模型,模型回归值与数值模拟计算值最大相对误差在2%以内.模型预测结果分析表明,叶片间距、转折角度、烟气流速和烟气含液量对除雾效率和压降有显著影响,与实验和理论分析结论一致.采用遗传算法对除雾器参数优化模型进行求解,结果表明在优化结构参数组合下除雾器性能有明显提高.提出的预数值计算与人工智能算法结合的方法为获取除雾器叶片最佳结构参数组合设计提供了新思路. 展开更多
关键词 除雾器 数值模拟 除雾效率 压降 最小二乘支持向量机 遗传算法
下载PDF
遗传优化的最小二乘支持向量机在开关磁阻电机建模中的应用 被引量:35
19
作者 尚万峰 赵升吨 申亚京 《中国电机工程学报》 EI CSCD 北大核心 2009年第12期65-69,共5页
针对开关磁阻电机的非线性磁链特性,用最小二乘支持向量机(least square support vector machine,LSSVM)与自适应遗传算法相结合的方法精确构建开关磁阻电动机的磁链模型。在最小二乘支持向量机通过采样数据训练模型的过程中,用自适应... 针对开关磁阻电机的非线性磁链特性,用最小二乘支持向量机(least square support vector machine,LSSVM)与自适应遗传算法相结合的方法精确构建开关磁阻电动机的磁链模型。在最小二乘支持向量机通过采样数据训练模型的过程中,用自适应遗传算法评价拟合误差,优化LSSVM模型的超参数,进而优化开关磁阻电机的磁链模型。通过比较该模型的预测数据与实际测量数据,可以得出用自适应遗传算法优化的最小二乘支持向量机构建的开关磁阻电机模型是可行的,有较高的精度和较好的预测能力。 展开更多
关键词 开关磁阻电机 最小二乘支持向量机 自适应遗传算法 建模 优化
下载PDF
自动气象站数据采集器温度通道的环境温度补偿 被引量:29
20
作者 行鸿彦 武向娟 +1 位作者 吕文华 徐伟 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第8期1868-1875,共8页
针对自动气象站数据采集器温度通道容易受到环境温度影响限制测量精度的问题,对数据采集器进行了温度漂移检测实验并对实验数据进行了误差分析,提出了基于改进自适应遗传算法优化的最小二乘支持向量机(improved adaptive geneticalgorit... 针对自动气象站数据采集器温度通道容易受到环境温度影响限制测量精度的问题,对数据采集器进行了温度漂移检测实验并对实验数据进行了误差分析,提出了基于改进自适应遗传算法优化的最小二乘支持向量机(improved adaptive geneticalgorithm least squares support vector machine,IAGA-LSSVM)的温度补偿方法。改进的自适应遗传算法能够对最小二乘支持向量机拟合过程中的关键参数进行调整从而建立最优模型。与传统LS-SVM相比,IAGA-LSSVM对温度数据的建模均方根误差减小了0.007,有效提高了建模的精度。根据建立的最优函数模型对该数据采集器温度通道进行温度补偿结果表明,经该方法补偿后的数据采集器在任何温度环境下的温度测量误差均小于0.03℃,具有更高的测量精度和稳定性,有效提高了自动气象站的温度观测质量。同时,设计开发了温度补偿界面,为自动气象站观测数据校验和实际业务应用奠定了基础。 展开更多
关键词 数据采集器 温度 最小二乘支持向量机 改进的自适应遗传算法
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部