The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the ...The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution.展开更多
The Gauss-Markov (GM) model and the Errors-in-Variables (EIV) model are frequently used to perform 3D coordinate transformations in geodesy and engineering surveys. In these applications, because the observation e...The Gauss-Markov (GM) model and the Errors-in-Variables (EIV) model are frequently used to perform 3D coordinate transformations in geodesy and engineering surveys. In these applications, because the observation errors in original coordinates system are also taken into account, the latter is more accurate and reasonable than the former. Although the Weighted Total Least Squares (WTLS) technique has been intro- duced into coordinate transformations as the measured points are heteroscedastic and correlated, the Variance- Covariance Matrix (VCM) of observations is restricted by a particular structure, namely, only the correlations of each points are taken into account. Because the 3D datum transformation with large rotation angle is a non- linear problem, the WTLS is no longer suitable in this ease. In this contribution, we suggested the nonlinear WTLS adjustments with equality constraints (NWTLS-EC) for 3D datum transformation with large rotation an- gle, which removed the particular structure restriction on the VCM. The Least Squares adjustment with Equality (LSE) constraints is employed to solve NWTLS-EC as the nonlinear model has been linearized, and an iterative algorithm is proposed with the LSE solution. A simulation study of 3D datum transformation with large rotation angle is given to insight into the feasibility of our algorithm at last.展开更多
基金supported by the National Natural Science Foundation of China,Grant Nos.42174011,41874001 and 41664001Innovation Found Designated for Graduate Students of ECUT,Grant No.DHYC-202020。
文摘The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution.
基金supported by the National Natural Science Foundation of China(41074017)
文摘The Gauss-Markov (GM) model and the Errors-in-Variables (EIV) model are frequently used to perform 3D coordinate transformations in geodesy and engineering surveys. In these applications, because the observation errors in original coordinates system are also taken into account, the latter is more accurate and reasonable than the former. Although the Weighted Total Least Squares (WTLS) technique has been intro- duced into coordinate transformations as the measured points are heteroscedastic and correlated, the Variance- Covariance Matrix (VCM) of observations is restricted by a particular structure, namely, only the correlations of each points are taken into account. Because the 3D datum transformation with large rotation angle is a non- linear problem, the WTLS is no longer suitable in this ease. In this contribution, we suggested the nonlinear WTLS adjustments with equality constraints (NWTLS-EC) for 3D datum transformation with large rotation an- gle, which removed the particular structure restriction on the VCM. The Least Squares adjustment with Equality (LSE) constraints is employed to solve NWTLS-EC as the nonlinear model has been linearized, and an iterative algorithm is proposed with the LSE solution. A simulation study of 3D datum transformation with large rotation angle is given to insight into the feasibility of our algorithm at last.