期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
PARTIAL LEAST-SQUARES(PLS)REGRESSION AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES
1
作者 Xin An LIU Le Ming SHI +4 位作者 Zhi Hong XU Zhong Xiao PAN Zhi Liang LI Ying GAO Laboratory No.502,Institute of Chemical Defense,Beijing 102205 Laboratory of Computer Chemistry,Institute of Chemical Metallurgy,Chinese Academy of Sciences,Beijing 100080 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第3期233-236,共4页
The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by tradit... The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by traditional spectrophotometric methods.In this paper,the partial least-squares(PLS)regression is applied to the simultaneous determination of these compounds in mixtures by UV spectrophtometry without any pretreatment of the samples.Ten synthetic mixture samples are analyzed by the proposed method.The mean recoveries are 99.4%,996%,100.2%,99.3% and 99.1%,and the relative standard deviations(RSD) are 1.87%,1.98%,1.94%,0.960% and 0.672%,respectively. 展开更多
关键词 Pls)regression AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES PARTIAL least-squareS AS
下载PDF
Characterizing and estimating rice brown spot disease severity using stepwise regression,principal component regression and partial least-square regression 被引量:13
2
作者 LIU Zhan-yu1, HUANG Jing-feng1, SHI Jing-jing1, TAO Rong-xiang2, ZHOU Wan3, ZHANG Li-li3 (1Institute of Agriculture Remote Sensing and Information System Application, Zhejiang University, Hangzhou 310029, China) (2Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China) (3Plant Inspection Station of Hangzhou City, Hangzhou 310020, China) 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第10期738-744,共7页
Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of hea... Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of healthy and infected leaves by the fungus Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann) through the wavelength range from 350 to 2 500 nm. The percentage of leaf surface lesions was estimated and defined as the disease severity. Statistical methods like multiple stepwise regression, principal component analysis and partial least-square regression were utilized to calculate and estimate the disease severity of rice brown spot at the leaf level. Our results revealed that multiple stepwise linear regressions could efficiently estimate disease severity with three wavebands in seven steps. The root mean square errors (RMSEs) for training (n=210) and testing (n=53) dataset were 6.5% and 5.8%, respectively. Principal component analysis showed that the first principal component could explain approximately 80% of the variance of the original hyperspectral reflectance. The regression model with the first two principal components predicted a disease severity with RMSEs of 16.3% and 13.9% for the training and testing dataset, respec-tively. Partial least-square regression with seven extracted factors could most effectively predict disease severity compared with other statistical methods with RMSEs of 4.1% and 2.0% for the training and testing dataset, respectively. Our research demon-strates that it is feasible to estimate the disease severity of rice brown spot using hyperspectral reflectance data at the leaf level. 展开更多
关键词 HYPERSPECTRAL reflectance Rice BROWN SPOT PARTIAL least-square (Pls) regression STEPWISE regression Principal component regression (PCR)
下载PDF
A partial least-squares regression approach to land use studies in the Suzhou-Wuxi-Changzhou region 被引量:1
3
作者 ZHANG Yang ZHOU Chenghu ZHANG Yongmin 《Journal of Geographical Sciences》 SCIE CSCD 2007年第2期234-244,共11页
In several LUCC studies, statistical methods are being used to analyze land use data. A problem using conventional statistical methods in land use analysis is that these methods assume the data to be statistically ind... In several LUCC studies, statistical methods are being used to analyze land use data. A problem using conventional statistical methods in land use analysis is that these methods assume the data to be statistically independent. But in fact, they have the tendency to be dependent, a phenomenon known as multicollinearity, especially in the cases of few observations. In this paper, a Partial Least-Squares (PLS) regression approach is developed to study relationships between land use and its influencing factors through a case study of the Suzhou-Wuxi-Changzhou region in China. Multicollinearity exists in the dataset and the number of variables is high compared to the number of observations. Four PLS factors are selected through a preliminary analysis. The correlation analyses between land use and influencing factors demonstrate the land use character of rural industrialization and urbanization in the Suzhou-Wuxi-Changzhou region, meanwhile illustrate that the first PLS factor has enough ability to best describe land use patterns quantitatively, and most of the statistical relations derived from it accord with the fact. By the decreasing capacity of the PLS factors, the reliability of model outcome decreases correspondingly. 展开更多
关键词 land use multivariate data analysis partial least-squares regression Suzhou-Wuxi-Changzhou region MULTICOLLINEARITY
下载PDF
Partial least squares regression for predicting economic loss of vegetables caused by acid rain 被引量:2
4
作者 王菊 房春生 《Journal of Chongqing University》 CAS 2009年第1期10-16,共7页
To predict the economic loss of crops caused by acid rain,we used partial least squares(PLS) regression to build a model of single dependent variable -the economic loss calculated with the decrease in yield related to... To predict the economic loss of crops caused by acid rain,we used partial least squares(PLS) regression to build a model of single dependent variable -the economic loss calculated with the decrease in yield related to the pH value and levels of Ca2+,NH4+,Na+,K+,Mg2+,SO42-,NO3-,and Cl-in acid rain. We selected vegetables which were sensitive to acid rain as the sample crops,and collected 12 groups of data,of which 8 groups were used for modeling and 4 groups for testing. Using the cross validation method to evaluate the performace of this prediction model indicates that the optimum number of principal components was 3,determined by the minimum of prediction residual error sum of squares,and the prediction error of the regression equation ranges from -2.25% to 4.32%. The model predicted that the economic loss of vegetables from acid rain is negatively corrrelated to pH and the concentrations of NH4+,SO42-,NO3-,and Cl-in the rain,and positively correlated to the concentrations of Ca2+,Na+,K+ and Mg2+. The precision of the model may be improved if the non-linearity of original data is addressed. 展开更多
关键词 acid rain partial least-squares regression economic loss dose-response model
下载PDF
Improved adaptive pruning algorithm for least squares support vector regression 被引量:4
5
作者 Runpeng Gao Ye San 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期438-444,共7页
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit... As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance. 展开更多
关键词 least squares support vector regression machine ls- SVRM) PRUNING leave-one-out (LOO) error incremental learning decremental learning.
下载PDF
Fault diagnosis of power-shift steering transmission based on multiple outputs least squares support vector regression 被引量:2
6
作者 张英锋 马彪 +2 位作者 房京 张海岭 范昱珩 《Journal of Beijing Institute of Technology》 EI CAS 2011年第2期199-204,共6页
A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict t... A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict the future state of the power-shift steering transmission (PSST). A prediction model of PSST was gotten with multiple outputs LS-SVR. The model performance was greatly influenced by the penalty parameter γ and kernel parameter σ2 which were optimized using cross validation method. The training and prediction of the model were done with spectrometric oil analysis data. The predictive and actual values were compared and a fault in the second PSST was found. The research proved that this method had good accuracy in PSST fault prediction, and any possible problem in PSST could be found through a comparative analysis. 展开更多
关键词 least squares support vector regressionls-SVR) fault diagnosis power-shift steering transmission (PSST)
下载PDF
Linear Maximum Likelihood Regression Analysis for Untransformed Log-Normally Distributed Data
7
作者 Sara M. Gustavsson Sandra Johannesson +1 位作者 Gerd Sallsten Eva M. Andersson 《Open Journal of Statistics》 2012年第4期389-400,共12页
Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed dat... Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood (ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was evaluated with a large simulation study. Log-normal observations were generated according to the simulation models and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1. 展开更多
关键词 HETEROSCEDASTICITY MAXIMUM LIKELIHOOD Estimation LINEAR regression Model Log-Normal Distribution Weighed least-squareS regression
下载PDF
High-Dimensional Regression on Sparse Grids Applied to Pricing Moving Window Asian Options
8
作者 Stefan Dirnstorfer Andreas J. Grau Rudi Zagst 《Open Journal of Statistics》 2013年第6期427-440,共14页
The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high... The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high dimensionality required for approximating the early exercise boundary. We use sparse grid basis functions in the Least Squares Monte Carlo approach to solve this “curse of dimensionality” problem. The resulting algorithm provides a general and convergent method for pricing moving window Asian options. The sparse grid technique presented in this paper can be generalized to pricing other high-dimensional, early-exercisable derivatives. 展开更多
关键词 Sparse Grid regression least-squareS Monte Carlo MOVING WINDOW Asian OPTION
下载PDF
Regression Analysis of a Kind of Trapezoidal Fuzzy Numbers Based on a Shape Preserving Operator
9
作者 Jie Sun Qiujun Lu 《Journal of Data Analysis and Information Processing》 2017年第3期96-114,共19页
Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The ... Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model. 展开更多
关键词 FUZZY Sets LL-Type of Trapezoidal FUZZY NUMBERS least-squareS DEVIATIONS Shape Preserving OPERATOR FUZZY Linear regression
下载PDF
Fuzzy Varying Coefficient Bilinear Regression of Yield Series
10
作者 Ting He Qiujun Lu 《Journal of Data Analysis and Information Processing》 2015年第3期43-54,共12页
We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying ... We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying coefficient model on the basis of the fuzzy bilinear regression model. Secondly, we develop the least-squares method according to the complete distance between fuzzy numbers to estimate the coefficients and test the adaptability of the proposed model by means of generalized likelihood ratio test with SSE composite index. Finally, mean square errors and mean absolutely errors are employed to evaluate and compare the fitting of fuzzy auto regression, fuzzy bilinear regression and fuzzy varying coefficient bilinear regression models, and also the forecasting of three models. Empirical analysis turns out that the proposed model has good fitting and forecasting accuracy with regard to other regression models for the capital market. 展开更多
关键词 FUZZY VARYING COEFFICIENT BILINEAR regression Model FUZZY Financial Assets YIELD least-squareS Method Generalized Likelihood Ratio Test Forecast
下载PDF
基于LS-SVR岩石爆破块度预测 被引量:12
11
作者 史秀志 王洋 +1 位作者 黄丹 史采星 《爆破》 CSCD 北大核心 2016年第3期36-40,共5页
为了准确预测小样本条件下露天矿山岩石的爆破块度,并得到小样本条件下预测露天矿山爆破块度的有效方法,借助最小二乘支持向量机工具(LS-SVMlab)构建基于最小二乘支持向量机回归(LS-SVR)预测模型并合理优化模型参数。分别使用15组露天... 为了准确预测小样本条件下露天矿山岩石的爆破块度,并得到小样本条件下预测露天矿山爆破块度的有效方法,借助最小二乘支持向量机工具(LS-SVMlab)构建基于最小二乘支持向量机回归(LS-SVR)预测模型并合理优化模型参数。分别使用15组露天矿山爆破数据和35组爆破数据作为小样本容量和正常样本容量,对模型的预测精度进行检验。结果表明:两种样本容量下LS-SVR预测模型的预测结果精度都比同样本容量下人工神经网络(ANN)回归预测的结果精度更高,说明所提出的LS-SVR模型适用于预测露天矿山爆破块度,并且在小样本条件下更具优势。 展开更多
关键词 支持向量机 最小二乘支持向量机回归 ls-SVMlab 岩石块度 小样本预测
下载PDF
改进的LS-SVM算法及在交通流量预测上的应用 被引量:6
12
作者 张朝元 陈丽 《昆明理工大学学报(理工版)》 2008年第6期72-75,共4页
对标准的LS-SVM算法进行了改进,得到一种新的学习算法.这种新的学习算法不仅能减少计算的复杂性,提高学习速度;同时能提高函数估计的精确度.将改进的LS-SVM算法应用于交通流量的预测,同时与传统的多元线性回归及支持向量机方法进行比较... 对标准的LS-SVM算法进行了改进,得到一种新的学习算法.这种新的学习算法不仅能减少计算的复杂性,提高学习速度;同时能提高函数估计的精确度.将改进的LS-SVM算法应用于交通流量的预测,同时与传统的多元线性回归及支持向量机方法进行比较,结果表明改进的LS-SVM方法具有较高的预测精度,且实验取得了较好效果. 展开更多
关键词 SVM法 ls—SVM法 多元线性回归 交通流量 预测
下载PDF
基于LS-SVM的传感器智能校正及温度补偿 被引量:6
13
作者 王晓红 吴德会 《传感器与微系统》 CSCD 北大核心 2007年第3期76-79,共4页
提出一种基于最小二乘支持向量机(LS-SVM)的传感器非线性校正及温度补偿的新方法,并给出了相应的过程和算法。在该方法中,LS—SVM被用作构建逆模型,并通过该模型映射传感器非线性特性,同时实现了传感器的温度补偿和非线性校正。... 提出一种基于最小二乘支持向量机(LS-SVM)的传感器非线性校正及温度补偿的新方法,并给出了相应的过程和算法。在该方法中,LS—SVM被用作构建逆模型,并通过该模型映射传感器非线性特性,同时实现了传感器的温度补偿和非线性校正。通过实际电容式压力传感器校正的实验结果表明:所提模型建模速度比SVM模型高1-2个数量级,补偿误差仅为SVM模型的20%左右。因此,该学习速度快、补偿精度高、抗噪声干扰能力强,适合传感器温度补偿及校正。 展开更多
关键词 最小二乘支持向量机 回归 传感器 温度补偿 校正
下载PDF
基于新息的多参量混沌时间序列LS-SVR加权预测 被引量:5
14
作者 郭阳明 翟正军 姜红梅 《西北工业大学学报》 EI CAS CSCD 北大核心 2009年第1期83-87,共5页
复杂系统常常依赖于通过观测所获得的多参量混沌时间序列进行预测分析。论文借鉴单参量混沌时间序列预测的思路,考虑全部相关参量混沌时间序列中的信息,以实现多参量混沌时间序列的相空间重构。同时,基于新息优先原理和支持向量机理论,... 复杂系统常常依赖于通过观测所获得的多参量混沌时间序列进行预测分析。论文借鉴单参量混沌时间序列预测的思路,考虑全部相关参量混沌时间序列中的信息,以实现多参量混沌时间序列的相空间重构。同时,基于新息优先原理和支持向量机理论,结合混沌时间序列发展变化的规律,提出分别利用相空间重构后长期多样本和近期少样本构建2个自适应最小二乘支持向量回归预测模型进行加权预测的观点,并给出了以预测均方根误差最小为目标函数的模型参数混沌优化方法。论文以某飞机转子部件磨损故障的3个相关参量的仿真混沌时间序列为例进行了预测实验,结果表明文中方法有较好的预测精度,是一种有效的预测方法。 展开更多
关键词 支持向量机 多参量 混沌时间序列 最小二乘支持向量回归 加权预测
下载PDF
线性回归模型中回归系数的平衡LS估计 被引量:2
15
作者 柏超 罗汉 《中南林业科技大学学报》 CAS CSCD 北大核心 2008年第2期144-146,155,共4页
在Zeller平衡损失思想的启发下,对线性回归模型提出了一种新的参数估计标准,得到了回归系数的广义平衡LS估计,并且在新的标准下提出并讨论了参数受线性约束和有界约束时的平衡LS估计和广义平衡LS估计.
关键词 数学 线性回归模型 参数估计 平衡ls估计 约束平衡ls估计
下载PDF
基于PSO-LS-SVMR的公共建筑能耗短期预测模型 被引量:7
16
作者 邓晓红 宫磊 刘兴民 《建筑节能》 CAS 2019年第4期120-124,共5页
提出一种粒子群算法优化的最小二乘支持向量机回归模型(PSO-LS-SVMR),以实现对公共建筑能耗的短期预测。采用某大型公共建筑物连续31期的用电量及所在地区相关天气指标的实测数据,分别运用PSO-LS-SVMR模型和LMBP神经网络模型对其建筑能... 提出一种粒子群算法优化的最小二乘支持向量机回归模型(PSO-LS-SVMR),以实现对公共建筑能耗的短期预测。采用某大型公共建筑物连续31期的用电量及所在地区相关天气指标的实测数据,分别运用PSO-LS-SVMR模型和LMBP神经网络模型对其建筑能耗进行短期预测,并对预测结果展开深入研究。研究结果表明,提出的PSO-LS-SVMR模型在对样本内数据和样本外数据的预测上均取得了较好效果,可以满足公共建筑能耗短期预测的实际需要,为建筑节能管理提供理论支持与决策参考。 展开更多
关键词 建筑能耗 最小二乘支持向量机回归(ls-SVMR) 粒子群算法(PSO)
下载PDF
LS-SVM在混沌时间序列预测中的应用 被引量:9
17
作者 孙德山 吴今培 《微机发展》 2004年第1期21-22,25,共3页
支持向量机是一种基于统计学习理论的新颖的机器学习方法,该方法已广泛用于解决分类和回归问题。文中将最小二乘支持向量机算法应用于混沌时间序列预测中,并同BP网络及RBF网络的预测结果进行了比较分析。仿真实验表明,该方法具有很好的... 支持向量机是一种基于统计学习理论的新颖的机器学习方法,该方法已广泛用于解决分类和回归问题。文中将最小二乘支持向量机算法应用于混沌时间序列预测中,并同BP网络及RBF网络的预测结果进行了比较分析。仿真实验表明,该方法具有很好的泛化能力和一定的噪声容忍能力。 展开更多
关键词 机器学习 支持向量机 ls-SVM 混沌时间序列预测 神经网络
下载PDF
基于LS-SVR的图像噪声去除算法研究 被引量:3
18
作者 于忠党 王龙山 《自动化学报》 EI CSCD 北大核心 2009年第4期364-370,共7页
通过对最小二乘支持向量机(Least squares support vector regression,LS-SVR)滤波特性的分析,给出了LS-SVR用于图像滤波的卷积模板构造方法,解决了LS-SVR在应用中需要求解的问题,在此基础上,提出了基于LS-SVR的开关型椒盐噪声滤波算法... 通过对最小二乘支持向量机(Least squares support vector regression,LS-SVR)滤波特性的分析,给出了LS-SVR用于图像滤波的卷积模板构造方法,解决了LS-SVR在应用中需要求解的问题,在此基础上,提出了基于LS-SVR的开关型椒盐噪声滤波算法.滤波算法中以Maximum-minimum算子作为椒盐噪声检测器,利用滤波窗口内非噪声点构成LS-SVR的输入数据,使用事先构造出的LS-SVR滤波算子,对滤波窗口进行简单的卷积运算,实现了被椒盐噪声污染点数据的有效恢复,实验表明,本文提出的方法具有较好的细节保护能力和较强的噪声去除能力. 展开更多
关键词 图像滤波 最小二乘支持向量机 开关滤波 卷积算子
下载PDF
燃料成分分析及基于LS-SVM对锅炉效率的预测 被引量:1
19
作者 李艳 奚溪 +1 位作者 徐菲菲 梅宁 《热科学与技术》 CAS CSCD 北大核心 2014年第1期56-60,共5页
利用回归分析的方法,根据实验数据,拟合出灰分,挥发分,全硫与发热量之间的线性系数,确定成分相关性。基于最小二乘支持向量机(least square-spport vector machine,LS-SVM)建立了电站锅炉能源消耗及排放模型,实现了对排烟温度、飞灰含... 利用回归分析的方法,根据实验数据,拟合出灰分,挥发分,全硫与发热量之间的线性系数,确定成分相关性。基于最小二乘支持向量机(least square-spport vector machine,LS-SVM)建立了电站锅炉能源消耗及排放模型,实现了对排烟温度、飞灰含碳质量分数等模型参数的软测量以及对锅炉效率的预测。 展开更多
关键词 回归分析 最小二乘支持向量机 锅炉效率
下载PDF
基于LS-SVR的图像矫正 被引量:2
20
作者 祝振敏 吕兆康 刘百芬 《大连理工大学学报》 EI CAS CSCD 北大核心 2016年第1期86-91,共6页
最小二乘支持向量回归(the least squares support vector regression,LS-SVR)算法因其回归拟合度高广泛应用于各领域中.以目标物在不同光源下采集的图像呈现出不同的颜色值,从而导致图像与目标物出现视觉上的偏差为研究对象,并以潘通... 最小二乘支持向量回归(the least squares support vector regression,LS-SVR)算法因其回归拟合度高广泛应用于各领域中.以目标物在不同光源下采集的图像呈现出不同的颜色值,从而导致图像与目标物出现视觉上的偏差为研究对象,并以潘通色卡为参照,利用LSSVR算法,结合将RGB颜色空间到sRGB颜色空间的转换模型,对测试图像进行矫正处理.实验结果表明:与多项式回归相比,LS-SVR算法能取得更小的色差,且矫正后的图像更接近于目标图像. 展开更多
关键词 颜色空间 最小二乘支持向量回归(ls-SVR) 图像矫正 色差
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部