The Strebel point is a TeichmOller equivalence class in the Teichmuller space that has a certain rigidity in the extremality of the maximal dilatation. In this paper, we give a sufficient condition in terms of the Sch...The Strebel point is a TeichmOller equivalence class in the Teichmuller space that has a certain rigidity in the extremality of the maximal dilatation. In this paper, we give a sufficient condition in terms of the Schwarzian derivative for a Teichmuller equivalence class of the universal Teichmuller space under which the class is a Strebel point. As an application, we construct a Teichmuller equivalence class that is a Strebel point and that is not an asymptotically conformal class.展开更多
A Lorenz map f : I --> I is a one dimensional piecewise monotone map with a single discontinuity c. Let [GRAPHICS] be the collection of all the preimsges of c. Authors prove that if C'(f) is countable then ther...A Lorenz map f : I --> I is a one dimensional piecewise monotone map with a single discontinuity c. Let [GRAPHICS] be the collection of all the preimsges of c. Authors prove that if C'(f) is countable then there exists M such that Card(omega(x)) less than or equal to M for all x is an element of I. If C'(f) is uncountable then omega(x) is uncountable for some x is an element of I. So f is asymptotically periodic if and only if C'(f) is countable.展开更多
文摘The Strebel point is a TeichmOller equivalence class in the Teichmuller space that has a certain rigidity in the extremality of the maximal dilatation. In this paper, we give a sufficient condition in terms of the Schwarzian derivative for a Teichmuller equivalence class of the universal Teichmuller space under which the class is a Strebel point. As an application, we construct a Teichmuller equivalence class that is a Strebel point and that is not an asymptotically conformal class.
文摘A Lorenz map f : I --> I is a one dimensional piecewise monotone map with a single discontinuity c. Let [GRAPHICS] be the collection of all the preimsges of c. Authors prove that if C'(f) is countable then there exists M such that Card(omega(x)) less than or equal to M for all x is an element of I. If C'(f) is uncountable then omega(x) is uncountable for some x is an element of I. So f is asymptotically periodic if and only if C'(f) is countable.