In order to obtain much faster convergence, Miiller introduced the left Gamma quasi- interpolants and obtained an approximation equivalence theorem in terms of 2r wφ (f,t)p. Cuo extended the MiiUer's results to w...In order to obtain much faster convergence, Miiller introduced the left Gamma quasi- interpolants and obtained an approximation equivalence theorem in terms of 2r wφ (f,t)p. Cuo extended the MiiUer's results to wφ^24 (f, t)∞. In this paper we improve the previous results and give a weighted approximation equivalence theorem.展开更多
Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. We consider left Gamma quasi-interpolants and give a pointwise simultaneous approximation equivalence theorem with...Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. We consider left Gamma quasi-interpolants and give a pointwise simultaneous approximation equivalence theorem with ωφλ^2r(f,t)∞ by means of unified the classical modulus and Ditzian-Totick modulus.展开更多
文摘In order to obtain much faster convergence, Miiller introduced the left Gamma quasi- interpolants and obtained an approximation equivalence theorem in terms of 2r wφ (f,t)p. Cuo extended the MiiUer's results to wφ^24 (f, t)∞. In this paper we improve the previous results and give a weighted approximation equivalence theorem.
基金the NSF of Zhejiang Province(102005)the Foundation of Key Discipline of ZhejiangProvince(2005)
文摘Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. We consider left Gamma quasi-interpolants and give a pointwise simultaneous approximation equivalence theorem with ωφλ^2r(f,t)∞ by means of unified the classical modulus and Ditzian-Totick modulus.