We study another structure of so-called left C-wrpp semigroups. In particular, the concept of left △-product is extended and enriched. The aim of this paper is to give a construction of left C-wrpp semigroups by a le...We study another structure of so-called left C-wrpp semigroups. In particular, the concept of left △-product is extended and enriched. The aim of this paper is to give a construction of left C-wrpp semigroups by a left regular band and a strong semilattice of left-R cancellative monoids. Properties of left C-wrpp semigroups endowed with left △-products are particularly investigated.展开更多
The concepts of L*-inverse semigroups and left wreath products of semigroups are introduced. It is shown that the L*-inverse semigroup can be described as the left wreath product of a type A semigroupΓand a left regu...The concepts of L*-inverse semigroups and left wreath products of semigroups are introduced. It is shown that the L*-inverse semigroup can be described as the left wreath product of a type A semigroupΓand a left regular band B together with a mapping which maps the semigroupΓinto the endomorphism semigroup End(B). This result generalizes the structure theorem of Yamada for the left inverse semigroups in the class of regular semigroups. We shall also provide a constructed example for the L*-inverse semigroups by using the left wreath products.展开更多
基金the Funds of Young and Middle-Aged Academic Talents of Linyi Normal University.
文摘We study another structure of so-called left C-wrpp semigroups. In particular, the concept of left △-product is extended and enriched. The aim of this paper is to give a construction of left C-wrpp semigroups by a left regular band and a strong semilattice of left-R cancellative monoids. Properties of left C-wrpp semigroups endowed with left △-products are particularly investigated.
文摘The concepts of L*-inverse semigroups and left wreath products of semigroups are introduced. It is shown that the L*-inverse semigroup can be described as the left wreath product of a type A semigroupΓand a left regular band B together with a mapping which maps the semigroupΓinto the endomorphism semigroup End(B). This result generalizes the structure theorem of Yamada for the left inverse semigroups in the class of regular semigroups. We shall also provide a constructed example for the L*-inverse semigroups by using the left wreath products.