Conformal Ricei collineations of static spherically symmetric spacetimes are studied. The general form of the vector fields generating eonformal Rieei eollineations is found when the Rieei tensor is non-degenerate, in...Conformal Ricei collineations of static spherically symmetric spacetimes are studied. The general form of the vector fields generating eonformal Rieei eollineations is found when the Rieei tensor is non-degenerate, in which ease the number of independent eonformal Rieei eollineations is 15, the maximum number for four-dimensional manifolds. In the degenerate ease it is found that the static spherically symmetric spaeetimes always have an infinite number of eonformal Rieei eollineations. Some examples are provided which admit non-trivial eonformal Rieei eollineations, and perfect fluid source of the matter.展开更多
A complete classification of static space times with maximal symmetric transverse spaces is provided, according to their Ricci collineations. The classification is made when one component of Ricci collineation vector ...A complete classification of static space times with maximal symmetric transverse spaces is provided, according to their Ricci collineations. The classification is made when one component of Ricci collineation vector field V is non-zero (cases 1 - 4), two components of V are non-zero (cases 5 - 10), and three components of V are non-zero (cases 11 - 14), respectlvily. Both non-degenerate (detRab ≠ 0) as well as the degenerate (det Rab = 0) cases are discussed and some new metrics are found.展开更多
In the paper [M. Akbar and R.G. Cai, Commun. Theor. Phys. 45 (2006) 95], a complete classification is provided with at least one component of the vector field V is zero. In this paper, I consider the vector field V ...In the paper [M. Akbar and R.G. Cai, Commun. Theor. Phys. 45 (2006) 95], a complete classification is provided with at least one component of the vector field V is zero. In this paper, I consider the vector field V with all non-zero components and the static space times with maximal symmetric transverse spaces are classified according to their Ricci collineations. These are investigated for non-degenerate Ricci tensor det R ≠0. It turns out that the only collineations admitted by these spaces can be ten, seven, six or four. It also covers our previous results as a spacial case. Some new metrics admitting proper Ricci collineations are also investigated.展开更多
文摘Conformal Ricei collineations of static spherically symmetric spacetimes are studied. The general form of the vector fields generating eonformal Rieei eollineations is found when the Rieei tensor is non-degenerate, in which ease the number of independent eonformal Rieei eollineations is 15, the maximum number for four-dimensional manifolds. In the degenerate ease it is found that the static spherically symmetric spaeetimes always have an infinite number of eonformal Rieei eollineations. Some examples are provided which admit non-trivial eonformal Rieei eollineations, and perfect fluid source of the matter.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10325525 and 90403029, and Ministry of Science and Technology of China under Grant No. TG1999075401
文摘A complete classification of static space times with maximal symmetric transverse spaces is provided, according to their Ricci collineations. The classification is made when one component of Ricci collineation vector field V is non-zero (cases 1 - 4), two components of V are non-zero (cases 5 - 10), and three components of V are non-zero (cases 11 - 14), respectlvily. Both non-degenerate (detRab ≠ 0) as well as the degenerate (det Rab = 0) cases are discussed and some new metrics are found.
文摘In the paper [M. Akbar and R.G. Cai, Commun. Theor. Phys. 45 (2006) 95], a complete classification is provided with at least one component of the vector field V is zero. In this paper, I consider the vector field V with all non-zero components and the static space times with maximal symmetric transverse spaces are classified according to their Ricci collineations. These are investigated for non-degenerate Ricci tensor det R ≠0. It turns out that the only collineations admitted by these spaces can be ten, seven, six or four. It also covers our previous results as a spacial case. Some new metrics admitting proper Ricci collineations are also investigated.