期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Uniform Strike-Slip Rate along the Xianshuihe-Xiaojiang Fault System and Its Implications for Active Tectonics in Southeastern Tibet 被引量:19
1
作者 HE Honglin RAN Hongliu Yasutaka IKEDA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期376-386,共11页
Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately un... Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately uniform strike slip rate strongly supports the clockwise rotation model of the southeastern Tibetan crust. By approximating the geometry of the arc-shaped Xianshuihe-Xiaojiang fault system as a portion of a small circle on a spherical Earth, the 15±2 mm/a strike slip rate corresponds to clockwise rotation of the Southeastern Tibetan Block at the (5.2±0.7)×10^-7 deg/a angular velocity around the pole (21°N, 88°E) relative to the Northeast Tibetan Block. The approximately uniform strike slip rate along the Xianshuihe-Xiaojiang fault system also implies that the Longmeushan thrust zone is not active, or at least its activity has been very weak since the Late Quaternary. Moreover, the total offset along the Xiaushuihe-Xiaojiang fault system suggests that the lateral extrusion of the Southeastern Tibetan Block relative to Northeastern Tibetan Block is about 160 km and 200-240 km relative to the Tarim-North China block. This amount of lateral extrusion of the Tibetan crust should have accommodated about 13-24% convergence between India and Eurasia based on mass balance calculations. Assuming that the slip rate of 15±2 mm/a is constant throughout the entire history of the Xianshuihe-Xiaojiang fault system, 11±1.5 Ma is needed for the Xianshuihe-Xiaojiang fault system to attain the 160 km of total offset. This implies that left-slip faulting on the Xianshuihe-Xiaojiang fault system might start at 11±1.5 Ma. 展开更多
关键词 Xianshuihe-Xiaojiang fault system southeastern Tibet strike-slip rate active tectonics
下载PDF
Geomorphic Evidence for and Rate of Sinistral Strike-slip Movement Along Northwest-trending Faults in Chaoshan Plain 被引量:1
2
作者 Wang Yipeng , Song Fangmin , Huang Qingtuan , and Chen WeiguangInstitute of Geology, China Seismological Bureau, Beijing 100029, ChinaXiamen Seismological Survey and Research Center, Seismological Bureau of Fujian Province, Xiamen 361021, China Institu 《Earthquake Research in China》 2000年第4期66-75,共10页
Two sets of active faults,northwest-and northeast-trending faults,are developed in the Chao-shan Plain of East Guangdong.After detailed interpretation of aerophotos,we have found outthat there is the clear phenomenon ... Two sets of active faults,northwest-and northeast-trending faults,are developed in the Chao-shan Plain of East Guangdong.After detailed interpretation of aerophotos,we have found outthat there is the clear phenomenon of sinistral dislocation of drainage system on the Huang-gang-shui fault and part of Fengshun-Shantou fault.Field investigation confirmed that the geo-morphic bodies along the two faults have undergone displacement.Large-scale topographicmapping was made at three displaced sites and samples for age dating were collected from thegeomorphic booies.Calculation indicates that the average rate of sinistral strike-slip movementin the Holocene time amounts to 1.11±0.09~2.69±0.24mm/a along the Huanggangshuifault and 3.26±0.26mm/a along the Fengshun-Shantou fault.These two more active NW-trending faults extend into sea area,where they intersect the NE-trending strongly active Nius-han Island-Xiongdi Isle-Nanpeng Isles fault at a depth of 40~50m in water.The intersection isa location favorable 展开更多
关键词 Chaoshan PLAIN Fault strike-slip rate Geomorphic body
下载PDF
Late-Quaternary Slip Rate and Seismic Activity of the Xianshuihe Fault Zone in Southwest China 被引量:14
3
作者 ZHANG Yongshuang YAO Xin +2 位作者 YU Kai DU Guoliang GUO Changbao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期525-536,共12页
The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight... The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas. 展开更多
关键词 Xianshuihe fault zone earthquake left-lateral strike-slip fault slip rate seismic activity prediction
下载PDF
Slip Rate of Yema River–Daxue Mountain Fault since the Late Pleistocene and Its Implications on the Deformation of the Northeastern Margin of the Tibetan Plateau 被引量:5
4
作者 LUO Hao HE Wengui +1 位作者 YUAN Daoyang SHAO Yanxiu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期561-574,共14页
The slip rate of Yema River-Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82... The slip rate of Yema River-Daxue Mountain fault in the western segment of Qilian Mountains was determined by the dated offset of river risers or gullies. Results indicate that the left-lateral fault slip rate is 2.82± 0.20 mm/a at Dazangdele site, 2.00 ± 0.24 mm/a at Shibandun site, and 0.50± 0.36 and 2.80±0.33 mm/a at two sites in Zhazihu. The ideal average slip rate of the whole fault is 2.81 ± 0.32 mm/a. The lower slip rate confirms part of the displacement of Altyn Tagh fault was transformed into an uplifting of the strap mountains in the western segment of Qilian Mountains, whereas another part transformed into sinistral displacement of Haiyuan fault. This study illustrates that the slip of large strike-slip faults in the northeastern margin of the plateau transforms into crust thickening at the tip of the fault without large-scale propagation to the outer parts of the plateau. 展开更多
关键词 Slip rate strike-slip fault Yema River-Daxue Mountain fault Altyn Tagh fault Qilian ranges
下载PDF
The advance in obtaining fault slip rate of strike slip fault-A review 被引量:3
5
作者 Jinrui Liu Zhikun Ren +2 位作者 Wei Min Guanghao Ha Jinghao Lei 《Earthquake Research Advances》 CSCD 2021年第4期1-8,共8页
Slip rate along the major active fault is an important parameter in the quantitative study of active tectonics.It is the average rate of fault slip during a certain period of time,reflecting the rate of strain energy ... Slip rate along the major active fault is an important parameter in the quantitative study of active tectonics.It is the average rate of fault slip during a certain period of time,reflecting the rate of strain energy accumulation on the fault zone.It cannot only be directly applied to evaluate the activity of the fault,the probabilistic seismic hazard analysis,but also important basic data for the study of geodynamics.However,due to the nonstandardized process of obtaining fault slip rates for a given strike-slip fault,the results could be diverse based on various methods by different researchers.In this review,we analyzed the main advances in the approaches to obtain fault slip rate.We found that there are four main sources affecting the final results of slip rate:the displacement along the fault,the dating of the corresponding displacement,the fitting of the displacement and corresponding dating results,and paleoslip analysis.The main advances in obtaining fault slip rates are based on improving the reli-ability of the above four main factors.To obtain a more reasonable and reliable slip rate for a given fault,it is necessary to select a suitable method according to the specific situation. 展开更多
关键词 Slip rate strike-slip fault Active tectonics Monte Carlo Paleoslip analysis
下载PDF
Paleoseismological Study of the Late Quaternary Slip-rate along the South Barkol Basin Fault and Its Tectonic Implications,Eastern Tian Shan,Xinjiang 被引量:1
6
作者 WU Fuyao RAN Yongkang +2 位作者 XU Liangxin CAO Jun LI An 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期429-442,共14页
The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Q... The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Quaternary activity, paleoseismology, and deformation characteristics of the fault provide important clues for understanding the tectonic process of the eastern Tian Shan orogen and implementing seismic mitigation. Through interpretation of high-resolution satellite images, unmanned aerial vehicle measurements, and detailed geological and geomorphic investigations, we suggest that the fault exhibits clear left-lateral slip along its western segment. Paleoseismic trenches dug near Xiongkuer reveal evidence of six large paleoearthquakes. The four latest paleoearthquakes were dated: the oldest event occurred at 4663 BC–3839 BC. Data on the horizontal offsets along the probable 1842 Barkol earthquake coseismic rupture suggest clear multiple relationships between cumulative offsets and possible ~4 m of coseismic left-lateral slip per event. From the cumulative offsets and 14 C sample ages, we suggest an average Holocene left-lateral slip rate of 2.4–2.8 mm/a on the SBF, accounting for ~80% of lateral deformation within the entire eastern Tian Shan fault system. This result is comparable with the shortening rate of 2–4 mm/a in the whole eastern Tian Shan, indicating an equal role of strike-slip tectonics and compressional tectonics in this orogen, and that the SBF may accommodate substantial lateral tectonic deformation. 展开更多
关键词 Eastern Tian Shan South Barkol basin fault PALEOSEISMOLOGY left-lateral offset slip rate Eastern margin of Tibetan Plateau Proto-Tethys
下载PDF
Recent geodynamics of major strike-slip zones 被引量:1
7
作者 Trifonov Vladimir G. Korzhenkov Andrey M. Omar Khaled M. 《Geodesy and Geodynamics》 2015年第5期361-383,共23页
The subject of this study is strike-slip fault zones, where temporal variations of accumulation in strike-slip deformation complicate the standard process of deformation accu- mulation and release during strong earthq... The subject of this study is strike-slip fault zones, where temporal variations of accumulation in strike-slip deformation complicate the standard process of deformation accu- mulation and release during strong earthquakes. These temporal variations are expressed in the E1 Ghab segment of the Dead Sea Transform zone (DST, Eastern Mediterranean) and in the Talas-Fergana fault zone (Central Asia). According to Global Positioning System (GPS) data, the strike-slip deformations within these zones are not now accumulating or are accumulating at a rate that is significantly less than their average rate during the Holocene and Quaternary or the Pliocene-Quaternary. Simultaneously, weak transverse shortening has been measured in both zones by GPS. In both of these zones, strong earthquakes have not registered within the XX century, yet epochs of intensified seismicity (strong earthquakes) took place throughout history. In the southern and central parts of the E1 Ghab zone, there is evidence of 30 strong historical earthquakes of Ms ≥ 5.7; however, no instrumental earthquakes of Ms 〉 5 have been identified. The temporal distribution of seismic energy released by these earthquakes demonstrates a 350 ± 50-year cycle. Values for the seismic energies released during the peak phases of these cycles are approximated by a sinusoid that suggests the possibility of a 〉1800-year cycle ("hyper-cycle"), which began around the 3rd century, reached its maximum in the 12th century, and has continued until now. A combination of geological, archaeoseismological, and geodetic data show that the rate of sinistral strike-slip deformation varied in the fault zone, probably in conformity with the variation of seismicity during the "hyper-cycle." In the Talas-Fergana fault zone, trenching and 14C dating that was correlated with right lateral offsets, gave a possible preliminary estimate of the average rates of the Late Holocene strike slip of about 10 mm per year, with a decrease in the SE direction to 4 mm-4.5 mm per year. These studies also showed that the slip in the Talas-Fergana fault zone was realized mainly during strong earthquakes. New trenching and 14C dating of paleoearthquake records identified the epoch of seismicity intensification dating to the XIV-XVII centuries. These paleoearthquakes could produce a total dextral slip at several meters. Therefore, consid- eration of these epochs was necessary to determine a calculated average slip rate during the Late Holocene. 展开更多
关键词 Active strike-slip faultsHistorical seismicity Paleoseismicity Temporal variations of focalmechanisms of earthquakes rates of accumulation of strike-slipdeformation
下载PDF
Yitong Graben:a Typical Petroliferous Strike-Slip Fault Depression of China
8
作者 Chen Quanmao Zhang GuangyaChina University of Geosciences , Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1993年第1期88-93,共6页
Although Yitong graben appears in a rift basin region of Eastern China , it is really not a rift basin but a strike-slip depression . Its features are as follows : (1 ) graben is controlled by both east and west bound... Although Yitong graben appears in a rift basin region of Eastern China , it is really not a rift basin but a strike-slip depression . Its features are as follows : (1 ) graben is controlled by both east and west boundary fauns without any relationship with Mono discontinuity figure ; (2 ) there is no alkalic or calc-alkalic igneous rocks in the layer of early and middle period of graben development ; (3 )west boundary fault is a typical strike-slip fault with some what of arc along the strike , and the fault depression locates in the concave of the arc . East boundary fault is a syndepostional normal fault with translational motion ; (4 ) graben has a long and narrow shape with four sags and three bulges alternating each other ; (5 ) the cross section of graben is asymmetric , high in the east and low in the west ; (6 )the lithofacies changes are quite fast in the cross section . Unconfonnities exist in some area of graben ; (7 )the angle between fault 2 and west boundary fault is a acute angle directing the opposite trend of the west side motion of boundary fault ; (8 )the extensional rate of graben is about 12% , less than the rate in Huabei (19%) and Liaohe (20 %)rift basin. 展开更多
关键词 DEPRESSION strike-slip fault fault sag fault bulge extensional rate.
下载PDF
Slip Rate on the Altyn Tagh Fault on the West of the Cherchen River (Between 85°~ 85°45′E) Since Late Quaternary
9
作者 WangFeng LiMing +2 位作者 XuXiwei ZhengRongzhang ChenWenbin 《Earthquake Research in China》 2004年第4期396-405,共10页
Because of the significance to the formation and evolution of the Tibetan plateau, the displacement and slip rate of the Altyn Tagh fault have been topics full of disputation. Scientists who hold different opinions on... Because of the significance to the formation and evolution of the Tibetan plateau, the displacement and slip rate of the Altyn Tagh fault have been topics full of disputation. Scientists who hold different opinions on the evolution of Tibet insist on different slip rates and displacements of the fault zone. In the article, study is focused on the late Quaternary slip rate of the Altyn Tagh fault west of the Cherchen River (between 85°E and 85°45’E). On the basis of high resolution SPOT images of the region, three sites, namely Koramlik, Aqqan pasture and Dalakuansay, were chosen for field investigation. To calculate the slip rate of the fault, displacement of terraces was measured on SPOT satellite images or in situ during fieldwork and thermo-luminescence (TL) dating method was used. To get the ages of terraces, samples of sand were collected from the uppermost sand beds that lie just under loess. The method for calculating slip rate of fault is to divide the displacement of terrace risers by the age of its neighboring lower terrace. The displacement of rivers is not considered in this article because of its uncertainties. At Koramlik, the slip rate of the Altyn Tagh fault is 11.6±2.6mm/a since 6.02±0.47ka B.P and 9.6±2.6mm/a since 15.76±1.19ka B.P. At Aqqan pasture, about 30km west of Koramlik, the slip rate is 12.1±1.9mm/a since 2.06±0.16 ka B.P. At Dalakuansayi, the slip rate of the fault is 12.2±3.0mm/a since 4.91±0.39ka B.P. Hence, we get the average slip rate of 11.4±2.5mm/a for the western part of the Altyn Tagh Fault since Holocene. This result is close to the latest results from GPS research. 展开更多
关键词 The Altyn Tagh fault strike-slip fault Offset landform Slip rate
下载PDF
Present-day tectonic activity along the central section of the AltynTagh fault derived from time series InSAR 被引量:1
10
作者 Jiangtao Qiu Lei Liu +1 位作者 Chen Wang Yang Wang 《Geodesy and Geodynamics》 2019年第4期307-314,共8页
The Altyn Tagh Fault(ATF) is a large-scale complex tectonic system. In this study, the present-day crustal deformation of the central section of the ATF(90.8E-91.58E) was obtained using 14 images on a descending track... The Altyn Tagh Fault(ATF) is a large-scale complex tectonic system. In this study, the present-day crustal deformation of the central section of the ATF(90.8E-91.58E) was obtained using 14 images on a descending track acquired between 2007 and 2010 from Advanced Land Observing Satellite(ALOS). To improve the accuracy of the interferograms, ALOS World 3 De30 m(AW3 D-30)Digital Surface Model(DSM) from the Japan Aerospace Exploration Agency was used in Small Baseline Subset(SBAS) Interferometric Synthetic Aperture Radar(InSAR) processing. The Line of Sight(LOS) deformation map show that there is an obvious zoning feature. With the main ATF as the boundary, the north block is concentrated around -35~ -60 mm, and the south block is concentrated around -9 ~ 11 mm. Based on the InSAR velocity map, we inverted for the strike-slip rate and locking depth of the fault using the twodimensional strike-slip fault buried-dislocation model. The inversion results for the strike-slip rate at three selected cross-section locations perpendicular to the ATF were 6.1 mm/a, 5.3 mm/a and 7.9 mm/a from west to east;the corresponding locking depths were 9.5 km, 6.8 km and 12.3 km from west to east.The location and trend of the fault obtained by inversion are coincides with the Xorkol seismic belt. 展开更多
关键词 InSA Altyn Tagh FAULT system strike-slip rate GEODETIC INVERSION
下载PDF
Analysis of the Motion and Deformation Characteristics along the Zhangjiakou-Bohai Fault 被引量:1
11
作者 Chen Changyun 《Earthquake Research in China》 CSCD 2017年第1期66-78,共13页
We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal... We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal horizontal motion velocities in the research zone.Strain rate components are computed in the spheric coordinate system by the least square collocation method.According to the spatial distribution of the principal strain rate,dilation rate and maximum shear strain rate derived from GPS measurements,this paper analyses the deformation of the subordinary faults of the Zhangjiakou-Bohai fault.The principal compression strain rates are apparently greater than the principal extension strain rates.The larger shear strain rate is mainly in and around the Xianghe,Wenan and Tangshan areas in Hebei Province.According to the profiles across different segments of the Zhangjiakou-Bohai fault,the three segments glong the Zhangjiakou-Bohai fault show an obviously left-lateal strike-slip and compression characteristics.By analysis of the motion characteristics of the blocks,e.g.the Yanshan block,North China Plain block,Ordos block,and Ludong-Huanghai block in and around the North China region,this paper speculates that the dynamics of the motion styles of Zhangjiakou-Bohai fault may directly come from the relative movement between the Yanshan block and the North China plain block,and the ultimate dynamics may be the results of the collison between Indian plate and Eurasian plate,and the persistent northeastward extrusion of the Indian plate. 展开更多
关键词 Zhangjiakou-Bohai fault zone Crustal deformation Velocity filed Strain rate filed left-lateral strike-slip
下载PDF
Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model 被引量:33
12
作者 P. Tapponnier J. Van Der Woerd +1 位作者 F. J. Ryerson A.S. Meriaux 《Science China Earth Sciences》 SCIE EI CAS 2005年第3期384-397,共14页
Based on technical processing of high-resolution SPOT images and aerophotos, detailed mapping of offset landforms in combination with field examination and displacement measurement, and dating of offset geomorphic sur... Based on technical processing of high-resolution SPOT images and aerophotos, detailed mapping of offset landforms in combination with field examination and displacement measurement, and dating of offset geomorphic surfaces by using carbon fourteen (14C), cos- mogenic nuclides (10Be+26Al) and thermoluminescence (TL) methods, the Holocene sinistral slip rates on different segments of the Altyn Tagh Fault (ATF) are obtained. The slip rates reach 17.5 ±2 mm/a on the central and western segments west of Aksay Town, 11±3.5 mm/a on the Subei-Shibaocheng segment, 4.8±1.0 mm/a on the Sulehe segment and only 2.2±0.2 mm/a on the Kuantanshan segment, an easternmost segment of the ATF. The sudden change points for loss of sinistral slip rates are located at the Subei, Shibaocheng and Shulehe triple junctions where NW-trending active thrust faults splay from the ATF and propagate southeastward. Slip vector analyses indicate that the loss of the sinistral slip rates from west to east across a triple junction has structurally transformed into local crustal shortening perpendicular to the active thrust faults and strong uplifting of the thrust sheets to form the NW-trending Danghe Nanshan, Daxueshan and Qilianshan Ranges. Therefore, the eastward extrusion of the northern Qing- hai-Tibetan Plateau is limited and this is in accord with “the imbricated thrusting transforma- tion-limited extrusion model”. 展开更多
关键词 Altyn Tagh Fault sinistral strike-slip rate STRUCTURAL transformation EXTRUSION tectonics.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部