On January 1, 2024 at 16:10:09 JST, an M_(j) 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, ...On January 1, 2024 at 16:10:09 JST, an M_(j) 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, we provide an overview of this earthquake, focusing on the slip distribution of the mainshock and its relationship with the preceding swarm. We also reexamined the source areas of other large earthquakes that occurred around the Sea of Japan in the past and compared them with the Matsushiro earthquake swarm in central Japan from1964 to 1968. The difference between the Matsushiro earthquake swarm and the Noto earthquake swarm is the surrounding stress field. The Matsushiro earthquake swarm was a strike-slip stress field, so the cracks in the crust were oriented vertically. This allowed fluids seeped from the depths to rise and flow out to the surface. On the other hand, the Noto area was a reverse fault stress field. Therefore, the cracks in the earth's crust were oriented horizontally. Fluids flowing underground in deep areas could not rise and spread over a wide area in the horizontal plane. This may have caused a large amount of fluid to accumulate underground, triggering a large earthquake. Although our proposed mechanism does not take into account other complex geological conditions into consideration, it may provide a simple way to explain why the Noto swarm is followed by a large earthquake while other swarms are not.展开更多
The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight...The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.展开更多
We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal...We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal horizontal motion velocities in the research zone.Strain rate components are computed in the spheric coordinate system by the least square collocation method.According to the spatial distribution of the principal strain rate,dilation rate and maximum shear strain rate derived from GPS measurements,this paper analyses the deformation of the subordinary faults of the Zhangjiakou-Bohai fault.The principal compression strain rates are apparently greater than the principal extension strain rates.The larger shear strain rate is mainly in and around the Xianghe,Wenan and Tangshan areas in Hebei Province.According to the profiles across different segments of the Zhangjiakou-Bohai fault,the three segments glong the Zhangjiakou-Bohai fault show an obviously left-lateal strike-slip and compression characteristics.By analysis of the motion characteristics of the blocks,e.g.the Yanshan block,North China Plain block,Ordos block,and Ludong-Huanghai block in and around the North China region,this paper speculates that the dynamics of the motion styles of Zhangjiakou-Bohai fault may directly come from the relative movement between the Yanshan block and the North China plain block,and the ultimate dynamics may be the results of the collison between Indian plate and Eurasian plate,and the persistent northeastward extrusion of the Indian plate.展开更多
The Kebao coal basin is located at the middle segment of the Xiaojiang fault zone in the central part of Yunnan Province. The coal-bearing strata of Tertiary age are made up of alluvial fan-lacustrine-swamp genetic se...The Kebao coal basin is located at the middle segment of the Xiaojiang fault zone in the central part of Yunnan Province. The coal-bearing strata of Tertiary age are made up of alluvial fan-lacustrine-swamp genetic sequences. Sinistral strike-slip motion of the N-S trending fault zone has created a locally transtensional or transpres sional tectonic environment, giving rise to the relative movement of fault blocks in the basement, and the development of a strike-slip coal basin at the surface. Based on de tailed sedimentary-structural analyses, the paper proposes geodynamic models for the coal basin formation and its deformation.展开更多
基金supported by the National Nature Science Foundation of China (No. 42130312)。
文摘On January 1, 2024 at 16:10:09 JST, an M_(j) 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, we provide an overview of this earthquake, focusing on the slip distribution of the mainshock and its relationship with the preceding swarm. We also reexamined the source areas of other large earthquakes that occurred around the Sea of Japan in the past and compared them with the Matsushiro earthquake swarm in central Japan from1964 to 1968. The difference between the Matsushiro earthquake swarm and the Noto earthquake swarm is the surrounding stress field. The Matsushiro earthquake swarm was a strike-slip stress field, so the cracks in the crust were oriented vertically. This allowed fluids seeped from the depths to rise and flow out to the surface. On the other hand, the Noto area was a reverse fault stress field. Therefore, the cracks in the earth's crust were oriented horizontally. Fluids flowing underground in deep areas could not rise and spread over a wide area in the horizontal plane. This may have caused a large amount of fluid to accumulate underground, triggering a large earthquake. Although our proposed mechanism does not take into account other complex geological conditions into consideration, it may provide a simple way to explain why the Noto swarm is followed by a large earthquake while other swarms are not.
基金supported by the Special Project of Basic Work of Science and Technology(grant No.2011FY110100-2)the Project of China Geological Survey(grant No.1212010914025 and No.12120113038000)the Project of 12~(th) Five-Year National Sci-Tech Support Plan(grant No.2011BAK12B09)
文摘The Xianshuihe fault zone is a seismo-genetic fault zone of left-lateral slip in Southwest China. Since 1725, a total of 59 Ms ≥ 5.0 earthquakes have occurred along this fault zone, including 18 Ms 6.0–6.9 and eight Ms ≥ 7.0 earthquakes. The seismic risk of the Xianshuihe fault zone is a large and realistic threat to the western Sichuan economic corridor. Based on previous studies, we carried out field geological survey and remote sensing interpretation in the fault zone. In addition, geophysical surveys, trenching and age-dating were conducted in the key parts to better understand the geometry, spatial distribution and activity of the fault zone. We infer to divide the fault zone into two parts: the northwest part and the southeast part, with total eight segments. Their Late Quaternary slip rates vary in a range of 11.5 mm/a –(3±1) mm/a. The seismic activities of the Xianshuihe fault zone are frequent and strong, periodical, and reoccurred. Combining the spatial and temporal distribution of the historical earthquakes, the seismic hazard of the Xianshuihe fault zone has been predicted by using the relationship between magnitude and frequency of earthquakes caused by different fault segments. The prediction results show that the segment between Daofu and Qianning has a possibility of Ms ≥ 7.0 earthquakes, while the segment between Shimian and Luding is likely to have earthquakes of about Ms 7.0. It is suggested to establish a GPS or In SAR-based real-time monitoring network of surface displacement to cover the Xianshuihe fault zone, and an early warning system of earthquakes and post seismic geohazards to cover the major residential areas.
基金funded by the Technology and Innovation Foundation of the First Monitoring Center of China Earthquake Administration (FMC2014018)Science for Earthquake Resilience Project of China Earthquake Administration (XH15062)+1 种基金 National Natural Science Foundation Item of China (4137221541272233)
文摘We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal horizontal motion velocities in the research zone.Strain rate components are computed in the spheric coordinate system by the least square collocation method.According to the spatial distribution of the principal strain rate,dilation rate and maximum shear strain rate derived from GPS measurements,this paper analyses the deformation of the subordinary faults of the Zhangjiakou-Bohai fault.The principal compression strain rates are apparently greater than the principal extension strain rates.The larger shear strain rate is mainly in and around the Xianghe,Wenan and Tangshan areas in Hebei Province.According to the profiles across different segments of the Zhangjiakou-Bohai fault,the three segments glong the Zhangjiakou-Bohai fault show an obviously left-lateal strike-slip and compression characteristics.By analysis of the motion characteristics of the blocks,e.g.the Yanshan block,North China Plain block,Ordos block,and Ludong-Huanghai block in and around the North China region,this paper speculates that the dynamics of the motion styles of Zhangjiakou-Bohai fault may directly come from the relative movement between the Yanshan block and the North China plain block,and the ultimate dynamics may be the results of the collison between Indian plate and Eurasian plate,and the persistent northeastward extrusion of the Indian plate.
文摘The Kebao coal basin is located at the middle segment of the Xiaojiang fault zone in the central part of Yunnan Province. The coal-bearing strata of Tertiary age are made up of alluvial fan-lacustrine-swamp genetic sequences. Sinistral strike-slip motion of the N-S trending fault zone has created a locally transtensional or transpres sional tectonic environment, giving rise to the relative movement of fault blocks in the basement, and the development of a strike-slip coal basin at the surface. Based on de tailed sedimentary-structural analyses, the paper proposes geodynamic models for the coal basin formation and its deformation.