The impacts of climate change on crop yields are receiving renewed interest,with focus on cereals and staple crops at the regional and national scales.Yet,the impacts of climate change on the yields of leguminous crop...The impacts of climate change on crop yields are receiving renewed interest,with focus on cereals and staple crops at the regional and national scales.Yet,the impacts of climate change on the yields of leguminous crops in the local context has not been explored.Thus,an in-depth understanding of climate change in the local context may support the design of locally relevant adaptation responses to current and future climate risks.This study examined the impacts of climate variables(annual rainfall,annual average temperature,rainfall indices(rainfall onset,rainfall cessation,and the length of rainy days),and the number of dry days)on the yields of leguminous crops(groundnuts,cowpeas,and soybeans)in the Guinea Savanna agroecological zone of Ghana during the period of 1989-2020.The data were analysed using Mann-Kendall’s trend,Sen’s slope test,correlation analysis,and Multiple Regression Analysis(MRA).The findings revealed that annual rainfall,annual average temperature,rainfall onset,rainfall cessation,and the length of rainy days,and the number of dry days all showed varied impacts on the yields of groundnuts,cowpeas,and soybeans.The trend analysis detected a marginal decrease in the amount of rainfall,rainfall onset,and the number of dry days from 1989 to 2020(P>0.050).Annual average temperature and the length of rainy days substantially varied(P<0.050)from 1989 to 2020,showing an increasing trend.The findings also showed a marked upward trend for the yields of groundnuts,cowpeas,and soybeans during 2005-2020.The climate variables analysed above increased the yields of groundnuts,cowpeas,and soybeans by 49.0%,55.0%,and 69.0%,respectively.The yields of groundnuts,cowpeas,and soybeans fluctuated with the variability of 30.0%,28.0%,and 27.0%from 2005 to 2020,respectively.The three leguminous crops under study demonstrated unpredictable yields due to the variations of annual rainfall,annual average temperature,rainfall onset,rainfall cessation,the length of rainy days,and the number of dry days,which stressed the need for agricultural diversification,changing planting dates,using improved seed variety,and irrigation to respond to climate change.The results of this study implied that climate change considerably impacts crop production in the Guinea Savanna agroecological zone of Ghana,emphasizing the urgency of locally based and farmer-induced adaptation measures for food security and resilient agricultural systems.展开更多
[Objective] To study the differences in the tolerance of leguminous crops and cruciferous crops to microcystin (MC). [Methed] The cruciferous typical crops oilseed rapes, pakchois, cabbages and leguminous typical cr...[Objective] To study the differences in the tolerance of leguminous crops and cruciferous crops to microcystin (MC). [Methed] The cruciferous typical crops oilseed rapes, pakchois, cabbages and leguminous typical crops soybeans, peas and broad beans were selected as the materials to test the effects of MC of differ- ent concentrations on the germination, growth and development of leguminous crops and cruciferous crops. The measurement indicators included germination rate, plant height, chlorophyll, etc. [Result] The MC had great effects on the oilseed rape and pakchois of cruciferous crops, and smaller effects on cabbage, while the leguminous crops were generally not affected. [Conclusion] Leguminous crops are more tolerant to MC than cruciferous crops and more preferential in MC polluted regions.展开更多
An in vitro rumen gas production technique was employed to determine the methane production and fermentation characteristics of Leymus chinensis and Medicago ruthenica at differing harvest dates(May 15,May 30,June 30...An in vitro rumen gas production technique was employed to determine the methane production and fermentation characteristics of Leymus chinensis and Medicago ruthenica at differing harvest dates(May 15,May 30,June 30,July 30,August 30 and September 30),which are sequential phases within a single continuous growth of two 10-year-old pastures.To quantify the rate of degradation and compare in vitro rumen fermentation characteristic,a logistic-exponential model,where initial gas volume was zero(LE_0),was used to fit gas production and methane output results.Dried,milled forage samples were incubated in vitro for 72 h at 39℃ and gas production was recorded intermittently throughout the incubation and gas samples were collected to measure methane production.Results showed that there were significant interactions between species and harvest for all chemical composition variables(P〈0.001) and condensed tannin content(P〈0.001).L.chinensis produced more total gas and methane than M.ruthenica(P〈0.001).Both total gas and methane production decreased lineally(P〈0.001) with advancing harvest date.The degradation rates of L.chinensis and M.ruthenica harvested on September 30 were lower than those on the other harvest dates(P〈0.01).M.ruthenica fermented fluid had higher concentration of ammonia N(P〈0.05) and molar proportions of isobutyrate(P〈0.01),valerate(P〈0.001) and isovalerate(P〈0.01) in total volatile fatty acids than L chinensis.Furthermore,concentration of isovalerate decreased cubically with advancing harvest date(P〈0.05).In conclusion,M.ruthenica produced less methane than L.chinensis and the total gas and methane production decreased with advancing harvest date for both species,which may be due to the changes in contents of chemical compositions and condensed tannin in forages.展开更多
Agricultural activities that encourage slashing, burning and ploughing greatly affect the soil structure and soil organic matter on which soil water retention depends. In this study, we hypothesized that inclusion of ...Agricultural activities that encourage slashing, burning and ploughing greatly affect the soil structure and soil organic matter on which soil water retention depends. In this study, we hypothesized that inclusion of rotational leguminous tree species improves soil water retention in a semi-arid conservation agriculture system. In a study done in Kibwezi, semi-arid eastern Kenya, results showed that the amount of water retained in the different soil strata from plots with different tree species and tillage practices was highly significant (P = 0.032). Plots with planting basins and Gliricidia sepium and Faidherbia albida tree species retained more water in both the upper and lower strata. Plots with G. sepium tree species under planting basins and zero tillage under F. albida had significantly higher soil organic carbon levels than plots that were managed under ridges and ploughing (P = 0.002). On the other hand, bulk density in plots with planting basins and zero tillage and ridges ranged between 1.35 g/cm3 and 1.53 g/cm3. Conventional tillage plots had bulk density values of 1.65 g/cm3 and 1.72 g/cm3 in the upper and lower strata respectively. The time-dependent nature of rotational leguminous tree species on soil organic matter and soil water retention in the semi-arid conservation agriculture system highlights the importance of considering these species for improving organic carbon and water retention for improved crop production.展开更多
This study was carried out to assess the relationship of the status of nodulation(i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters(i.e., number of leaves, ro...This study was carried out to assess the relationship of the status of nodulation(i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters(i.e., number of leaves, root and shoot lengths, root biomass and shoot biomass) in Albizia saman and Leucaena leucocephala. The assessment started 60 days after seeding. The study revealed that nodulation response and biomass production in both species showed significant differences over time(p < 0.05) in all variables except in the root-shoot ratio(oven-dry) of L. leucocephala. The study also showed significant differences(p < 0.05) in nodule formation and biomass production at the end of the study period between the two species except in the number of nodules and leaves and the green root-shoot ratio. There were strong positive correlations between nodule formation and biomass production, i.e., the number of nodules and the age of plants, the number of nodules and leaves, as well as the number of nodules and biomass(root biomass and shoot biomass) in both species. The results obtained using principal component analysis(PCA) and correlation coefficients of the different characteristics of nodulation and biomass production were similar in both species. The PCA showed that shoot biomass(shoot green weight and shoot oven-dry weight) is positively correlated with PC1(with an eigenvalue of 7.50) and root length is positively correlated with PC2(with an eigenvalue of 0.19) in the case of A. saman. In the case of L. leucocephala, the PCA revealed that root biomass(root green weight and root oven-dry weight), shoot biomass and shoot length are also positively correlated with PC1, while nodule formation and the number of leaves are positively correlated with PC2(with an eigenvalue PC1 of 6.92 and PC2 of 0.49).展开更多
Olive (Olea europaea L.) tree is one of the most extensive and important agricultural crop in Mediterranean countries due to its beneficial health and nutritional properties and its high economic value. Currently, oli...Olive (Olea europaea L.) tree is one of the most extensive and important agricultural crop in Mediterranean countries due to its beneficial health and nutritional properties and its high economic value. Currently, olive tree constitutes the sixth most important cultivated plant in the world, spreading from the Mediterranean region of origin to new production areas such as Australia, South and North America and South Africa. However, the mobilization processes of storage materials i.e. reserve proteins during seed germination, which are largely involved in essential physiological process including plant growth and development, remain poorly understood. Morphometric and immunohistochemistry analyses of protein bodies contained in olive seed storage tissues, cotyledon and endosperm, were performed by using different microscopy techniques, including light (bright-field and fluorescence) microscopy and transmission electron microscopy. Furthermore, we used legumin-like proteins (11S-type globulins) as a molecular marker to study the mobilization of reserve proteins from PBs of cotyledons at germinating seedling stages by using immunofluorescence assays. Results demonstrated that cotyledon and endosperm are characterized by distinct PBs populations containing legumin-like proteins, distinctly discriminated by the number of PBs per cell and tissue, size, immunofluorescence and histochemical staining. These features reflect differential PBs biogenesis during development and maturation processes in olive seed tissues endosperm and cotyledon, in relation to proteins (polypeptides) final composition, SSPs processing and/or packaging during seed maturation. Three different mobilization patterns of legumin-like proteins were identified for the first time in cotyledon PBs during seedling germinating process. Mature proteins composition and/or processing, cell types and enzyme composition and/or differential activation have been discussed as key features determining how proteins mobilize from PBs for further degradation in the cotyledon.展开更多
The investigation was conducted to determine physiological criteria of early selection for salt tolerant leguminous plants. Plants were subjected to 5 levels of salt stress at the roots (0, 50, 100,150 and 200 mM NaC...The investigation was conducted to determine physiological criteria of early selection for salt tolerant leguminous plants. Plants were subjected to 5 levels of salt stress at the roots (0, 50, 100,150 and 200 mM NaCI). Results showed that sodium chloride had an underrating effect on growth of stems and seed germination of the species studied. The germination rates of seeds of Glycine max and Phaseolus vulgaris (sensitive glyeophytes) were affected from 3 g/L of NaCl, with critical thresholds at 9 and 12 g/L respectively. In contrast, critical thresholds with Mucunapoggei (facultative halophyte), Vigna unguiculata (moderately tolerant glycophyte) and P. adenanthus (natural halophyte) was found to be above 21 g/L. The reduction of stems growth rate were not significant in P. adenanthus whereas in M. poggei and V. unguiculata this inhibition was observed just when nutritive solutions were enriched with 200 mM. The lipid contents were reduced in all the species under salt stress, whereas proteins and proline contents in the leaves were substantially increased in tolerant species (M. poggei, P. adenanthus and V. unguiculata). In contrast, proteins and leaf proline contents were negatively affected by salt concentration to G. max and P. vulgaris. Seed germination, proteins and proline could be used as physiological criteria of early selection for salt tolerant leguminous plants.展开更多
This paper help with leguminous seeds detection and smart farming. There are hundreds of kinds of seeds and itcan be very difficult to distinguish between them. Botanists and those who study plants, however, can ident...This paper help with leguminous seeds detection and smart farming. There are hundreds of kinds of seeds and itcan be very difficult to distinguish between them. Botanists and those who study plants, however, can identifythe type of seed at a glance. As far as we know, this is the first work to consider leguminous seeds images withdifferent backgrounds and different sizes and crowding. Machine learning is used to automatically classify andlocate 11 different seed types. We chose Leguminous seeds from 11 types to be the objects of this study. Thosetypes are of different colors, sizes, and shapes to add variety and complexity to our research. The images datasetof the leguminous seeds was manually collected, annotated, and then split randomly into three sub-datasetstrain, validation, and test (predictions), with a ratio of 80%, 10%, and 10% respectively. The images consideredthe variability between different leguminous seed types. The images were captured on five different backgrounds: white A4 paper, black pad, dark blue pad, dark green pad, and green pad. Different heights and shootingangles were considered. The crowdedness of the seeds also varied randomly between 1 and 50 seeds per image.Different combinations and arrangements between the 11 types were considered. Two different image-capturingdevices were used: a SAMSUNG smartphone camera and a Canon digital camera. A total of 828 images wereobtained, including 9801 seed objects (labels). The dataset contained images of different backgrounds, heights,angles, crowdedness, arrangements, and combinations. The TensorFlow framework was used to construct theFaster Region-based Convolutional Neural Network (R-CNN) model and CSPDarknet53 is used as the backbonefor YOLOv4 based on DenseNet designed to connect layers in convolutional neural. Using the transfer learningmethod, we optimized the seed detection models. The currently dominant object detection methods, Faster RCNN, and YOLOv4 performances were compared experimentally. The mAP (mean average precision) of the FasterR-CNN and YOLOv4 models were 84.56% and 98.52% respectively. YOLOv4 had a significant advantage in detection speed over Faster R-CNN which makes it suitable for real-time identification as well where high accuracy andlow false positives are needed. The results showed that YOLOv4 had better accuracy, and detection ability, as wellas faster detection speed beating Faster R-CNN by a large margin. The model can be effectively applied under avariety of backgrounds, image sizes, seed sizes, shooting angles, and shooting heights, as well as different levelsof seed crowding. It constitutes an effective and efficient method for detecting different leguminous seeds incomplex scenarios. This study provides a reference for further seed testing and enumeration applications.展开更多
Many small RNAs have been confirmed to play important roles in the development of root nodules and arbuscular mycorrhiza. In this study, we carried out the identification of certain small RNAs in leguminous plants(Med...Many small RNAs have been confirmed to play important roles in the development of root nodules and arbuscular mycorrhiza. In this study, we carried out the identification of certain small RNAs in leguminous plants(Medicago truncatula, soybean, peanut and common bean), such as miRNAs, tRFs and srRNAs, as well as the computational investigation of their regulations. Thirty miRNAs were predicted to be involved in establishing root nodules and mycorrhiza, and 12 of them were novel in common bean and peanut. The generation of tRFs in M. truncatula was not associated with tRNA gene frequencies and codon usage. Six tRFs exhibited different expressions in mycorrhiza and root nodules. Moreover, srRNA^(5.8S) in M. truncatula was generated from the regions with relatively low conservation at the rRNA 3′ terminal. The protein-protein interactions between the proteins encoded by the target genes of miRNAs, tRFs and srRNAs were computed. The regulation of these three types of sRNAs in the symbiosis between leguminous plants and microorganisms is not a single regulation of certain signaling or metabolic pathways but a global regulation for the plants to own growth or specific events in symbiosis.展开更多
文摘The impacts of climate change on crop yields are receiving renewed interest,with focus on cereals and staple crops at the regional and national scales.Yet,the impacts of climate change on the yields of leguminous crops in the local context has not been explored.Thus,an in-depth understanding of climate change in the local context may support the design of locally relevant adaptation responses to current and future climate risks.This study examined the impacts of climate variables(annual rainfall,annual average temperature,rainfall indices(rainfall onset,rainfall cessation,and the length of rainy days),and the number of dry days)on the yields of leguminous crops(groundnuts,cowpeas,and soybeans)in the Guinea Savanna agroecological zone of Ghana during the period of 1989-2020.The data were analysed using Mann-Kendall’s trend,Sen’s slope test,correlation analysis,and Multiple Regression Analysis(MRA).The findings revealed that annual rainfall,annual average temperature,rainfall onset,rainfall cessation,and the length of rainy days,and the number of dry days all showed varied impacts on the yields of groundnuts,cowpeas,and soybeans.The trend analysis detected a marginal decrease in the amount of rainfall,rainfall onset,and the number of dry days from 1989 to 2020(P>0.050).Annual average temperature and the length of rainy days substantially varied(P<0.050)from 1989 to 2020,showing an increasing trend.The findings also showed a marked upward trend for the yields of groundnuts,cowpeas,and soybeans during 2005-2020.The climate variables analysed above increased the yields of groundnuts,cowpeas,and soybeans by 49.0%,55.0%,and 69.0%,respectively.The yields of groundnuts,cowpeas,and soybeans fluctuated with the variability of 30.0%,28.0%,and 27.0%from 2005 to 2020,respectively.The three leguminous crops under study demonstrated unpredictable yields due to the variations of annual rainfall,annual average temperature,rainfall onset,rainfall cessation,the length of rainy days,and the number of dry days,which stressed the need for agricultural diversification,changing planting dates,using improved seed variety,and irrigation to respond to climate change.The results of this study implied that climate change considerably impacts crop production in the Guinea Savanna agroecological zone of Ghana,emphasizing the urgency of locally based and farmer-induced adaptation measures for food security and resilient agricultural systems.
基金Supported by the Key Technologies R&D Program of Henan Province(092102110105)the Docforal Foundation of Henan Institute of Engineering(D09010)+1 种基金the Critical Patented Projects in the Control and Management of National Polluted Water Bodies(2009ZX07104-005-03,2009ZX07102-003-004,2008ZX07101-007)the Open Lab Project of Hydrobiology Institutes of Chinese Academy of Sciences(2009FBZ09)~~
文摘[Objective] To study the differences in the tolerance of leguminous crops and cruciferous crops to microcystin (MC). [Methed] The cruciferous typical crops oilseed rapes, pakchois, cabbages and leguminous typical crops soybeans, peas and broad beans were selected as the materials to test the effects of MC of differ- ent concentrations on the germination, growth and development of leguminous crops and cruciferous crops. The measurement indicators included germination rate, plant height, chlorophyll, etc. [Result] The MC had great effects on the oilseed rape and pakchois of cruciferous crops, and smaller effects on cabbage, while the leguminous crops were generally not affected. [Conclusion] Leguminous crops are more tolerant to MC than cruciferous crops and more preferential in MC polluted regions.
基金support of the NationalNatural Science Foundation of China(31201820)the Excellent Young Scientists Foundation of the Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun,China(DLSYQ12008)
文摘An in vitro rumen gas production technique was employed to determine the methane production and fermentation characteristics of Leymus chinensis and Medicago ruthenica at differing harvest dates(May 15,May 30,June 30,July 30,August 30 and September 30),which are sequential phases within a single continuous growth of two 10-year-old pastures.To quantify the rate of degradation and compare in vitro rumen fermentation characteristic,a logistic-exponential model,where initial gas volume was zero(LE_0),was used to fit gas production and methane output results.Dried,milled forage samples were incubated in vitro for 72 h at 39℃ and gas production was recorded intermittently throughout the incubation and gas samples were collected to measure methane production.Results showed that there were significant interactions between species and harvest for all chemical composition variables(P〈0.001) and condensed tannin content(P〈0.001).L.chinensis produced more total gas and methane than M.ruthenica(P〈0.001).Both total gas and methane production decreased lineally(P〈0.001) with advancing harvest date.The degradation rates of L.chinensis and M.ruthenica harvested on September 30 were lower than those on the other harvest dates(P〈0.01).M.ruthenica fermented fluid had higher concentration of ammonia N(P〈0.05) and molar proportions of isobutyrate(P〈0.01),valerate(P〈0.001) and isovalerate(P〈0.01) in total volatile fatty acids than L chinensis.Furthermore,concentration of isovalerate decreased cubically with advancing harvest date(P〈0.05).In conclusion,M.ruthenica produced less methane than L.chinensis and the total gas and methane production decreased with advancing harvest date for both species,which may be due to the changes in contents of chemical compositions and condensed tannin in forages.
文摘Agricultural activities that encourage slashing, burning and ploughing greatly affect the soil structure and soil organic matter on which soil water retention depends. In this study, we hypothesized that inclusion of rotational leguminous tree species improves soil water retention in a semi-arid conservation agriculture system. In a study done in Kibwezi, semi-arid eastern Kenya, results showed that the amount of water retained in the different soil strata from plots with different tree species and tillage practices was highly significant (P = 0.032). Plots with planting basins and Gliricidia sepium and Faidherbia albida tree species retained more water in both the upper and lower strata. Plots with G. sepium tree species under planting basins and zero tillage under F. albida had significantly higher soil organic carbon levels than plots that were managed under ridges and ploughing (P = 0.002). On the other hand, bulk density in plots with planting basins and zero tillage and ridges ranged between 1.35 g/cm3 and 1.53 g/cm3. Conventional tillage plots had bulk density values of 1.65 g/cm3 and 1.72 g/cm3 in the upper and lower strata respectively. The time-dependent nature of rotational leguminous tree species on soil organic matter and soil water retention in the semi-arid conservation agriculture system highlights the importance of considering these species for improving organic carbon and water retention for improved crop production.
文摘This study was carried out to assess the relationship of the status of nodulation(i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters(i.e., number of leaves, root and shoot lengths, root biomass and shoot biomass) in Albizia saman and Leucaena leucocephala. The assessment started 60 days after seeding. The study revealed that nodulation response and biomass production in both species showed significant differences over time(p < 0.05) in all variables except in the root-shoot ratio(oven-dry) of L. leucocephala. The study also showed significant differences(p < 0.05) in nodule formation and biomass production at the end of the study period between the two species except in the number of nodules and leaves and the green root-shoot ratio. There were strong positive correlations between nodule formation and biomass production, i.e., the number of nodules and the age of plants, the number of nodules and leaves, as well as the number of nodules and biomass(root biomass and shoot biomass) in both species. The results obtained using principal component analysis(PCA) and correlation coefficients of the different characteristics of nodulation and biomass production were similar in both species. The PCA showed that shoot biomass(shoot green weight and shoot oven-dry weight) is positively correlated with PC1(with an eigenvalue of 7.50) and root length is positively correlated with PC2(with an eigenvalue of 0.19) in the case of A. saman. In the case of L. leucocephala, the PCA revealed that root biomass(root green weight and root oven-dry weight), shoot biomass and shoot length are also positively correlated with PC1, while nodule formation and the number of leaves are positively correlated with PC2(with an eigenvalue PC1 of 6.92 and PC2 of 0.49).
文摘Olive (Olea europaea L.) tree is one of the most extensive and important agricultural crop in Mediterranean countries due to its beneficial health and nutritional properties and its high economic value. Currently, olive tree constitutes the sixth most important cultivated plant in the world, spreading from the Mediterranean region of origin to new production areas such as Australia, South and North America and South Africa. However, the mobilization processes of storage materials i.e. reserve proteins during seed germination, which are largely involved in essential physiological process including plant growth and development, remain poorly understood. Morphometric and immunohistochemistry analyses of protein bodies contained in olive seed storage tissues, cotyledon and endosperm, were performed by using different microscopy techniques, including light (bright-field and fluorescence) microscopy and transmission electron microscopy. Furthermore, we used legumin-like proteins (11S-type globulins) as a molecular marker to study the mobilization of reserve proteins from PBs of cotyledons at germinating seedling stages by using immunofluorescence assays. Results demonstrated that cotyledon and endosperm are characterized by distinct PBs populations containing legumin-like proteins, distinctly discriminated by the number of PBs per cell and tissue, size, immunofluorescence and histochemical staining. These features reflect differential PBs biogenesis during development and maturation processes in olive seed tissues endosperm and cotyledon, in relation to proteins (polypeptides) final composition, SSPs processing and/or packaging during seed maturation. Three different mobilization patterns of legumin-like proteins were identified for the first time in cotyledon PBs during seedling germinating process. Mature proteins composition and/or processing, cell types and enzyme composition and/or differential activation have been discussed as key features determining how proteins mobilize from PBs for further degradation in the cotyledon.
文摘The investigation was conducted to determine physiological criteria of early selection for salt tolerant leguminous plants. Plants were subjected to 5 levels of salt stress at the roots (0, 50, 100,150 and 200 mM NaCI). Results showed that sodium chloride had an underrating effect on growth of stems and seed germination of the species studied. The germination rates of seeds of Glycine max and Phaseolus vulgaris (sensitive glyeophytes) were affected from 3 g/L of NaCl, with critical thresholds at 9 and 12 g/L respectively. In contrast, critical thresholds with Mucunapoggei (facultative halophyte), Vigna unguiculata (moderately tolerant glycophyte) and P. adenanthus (natural halophyte) was found to be above 21 g/L. The reduction of stems growth rate were not significant in P. adenanthus whereas in M. poggei and V. unguiculata this inhibition was observed just when nutritive solutions were enriched with 200 mM. The lipid contents were reduced in all the species under salt stress, whereas proteins and proline contents in the leaves were substantially increased in tolerant species (M. poggei, P. adenanthus and V. unguiculata). In contrast, proteins and leaf proline contents were negatively affected by salt concentration to G. max and P. vulgaris. Seed germination, proteins and proline could be used as physiological criteria of early selection for salt tolerant leguminous plants.
文摘This paper help with leguminous seeds detection and smart farming. There are hundreds of kinds of seeds and itcan be very difficult to distinguish between them. Botanists and those who study plants, however, can identifythe type of seed at a glance. As far as we know, this is the first work to consider leguminous seeds images withdifferent backgrounds and different sizes and crowding. Machine learning is used to automatically classify andlocate 11 different seed types. We chose Leguminous seeds from 11 types to be the objects of this study. Thosetypes are of different colors, sizes, and shapes to add variety and complexity to our research. The images datasetof the leguminous seeds was manually collected, annotated, and then split randomly into three sub-datasetstrain, validation, and test (predictions), with a ratio of 80%, 10%, and 10% respectively. The images consideredthe variability between different leguminous seed types. The images were captured on five different backgrounds: white A4 paper, black pad, dark blue pad, dark green pad, and green pad. Different heights and shootingangles were considered. The crowdedness of the seeds also varied randomly between 1 and 50 seeds per image.Different combinations and arrangements between the 11 types were considered. Two different image-capturingdevices were used: a SAMSUNG smartphone camera and a Canon digital camera. A total of 828 images wereobtained, including 9801 seed objects (labels). The dataset contained images of different backgrounds, heights,angles, crowdedness, arrangements, and combinations. The TensorFlow framework was used to construct theFaster Region-based Convolutional Neural Network (R-CNN) model and CSPDarknet53 is used as the backbonefor YOLOv4 based on DenseNet designed to connect layers in convolutional neural. Using the transfer learningmethod, we optimized the seed detection models. The currently dominant object detection methods, Faster RCNN, and YOLOv4 performances were compared experimentally. The mAP (mean average precision) of the FasterR-CNN and YOLOv4 models were 84.56% and 98.52% respectively. YOLOv4 had a significant advantage in detection speed over Faster R-CNN which makes it suitable for real-time identification as well where high accuracy andlow false positives are needed. The results showed that YOLOv4 had better accuracy, and detection ability, as wellas faster detection speed beating Faster R-CNN by a large margin. The model can be effectively applied under avariety of backgrounds, image sizes, seed sizes, shooting angles, and shooting heights, as well as different levelsof seed crowding. It constitutes an effective and efficient method for detecting different leguminous seeds incomplex scenarios. This study provides a reference for further seed testing and enumeration applications.
基金supported by the National Natural Science Foundation of China(31371328,31571366,31470191)the Science and Technology Project of Zhejiang Province(2013C3303,2014C33019)Project of Jiangxi Academy of Science(2014-XTPH1-09,2014-YYB-09)
文摘Many small RNAs have been confirmed to play important roles in the development of root nodules and arbuscular mycorrhiza. In this study, we carried out the identification of certain small RNAs in leguminous plants(Medicago truncatula, soybean, peanut and common bean), such as miRNAs, tRFs and srRNAs, as well as the computational investigation of their regulations. Thirty miRNAs were predicted to be involved in establishing root nodules and mycorrhiza, and 12 of them were novel in common bean and peanut. The generation of tRFs in M. truncatula was not associated with tRNA gene frequencies and codon usage. Six tRFs exhibited different expressions in mycorrhiza and root nodules. Moreover, srRNA^(5.8S) in M. truncatula was generated from the regions with relatively low conservation at the rRNA 3′ terminal. The protein-protein interactions between the proteins encoded by the target genes of miRNAs, tRFs and srRNAs were computed. The regulation of these three types of sRNAs in the symbiosis between leguminous plants and microorganisms is not a single regulation of certain signaling or metabolic pathways but a global regulation for the plants to own growth or specific events in symbiosis.